Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ánh Vũ Ngọc
Xem chi tiết
Từ Hạ
27 tháng 7 2018 lúc 8:30

Những hằng đẳng thức đáng nhớ (Tiếp 1)

Từ Hạ
27 tháng 7 2018 lúc 8:29

Những hằng đẳng thức đáng nhớ (Tiếp 1)

Vũ Minh Hằng
Xem chi tiết
@Nk>↑@
7 tháng 10 2018 lúc 7:31

a)\(a^4+a^2+1=\left(a^2\right)^2+2a^2.1+1^2-a^2=\left(a^2+1\right)^2-a^2=\left(a^2+1+a\right)\left(a^2+1-a\right)\)

b)\(a^4+a^2-2=a^4-a^2+2a^2-2=a^2\left(a^2-1\right)+2\left(a^2-1\right)=\left(a^2+2\right)\left(a^2-1\right)\)

c)\(x^4+4x^2-5=x^4-x^2+5x^2-5=x^2\left(x^2-1\right)+5\left(x^2-1\right)=\left(x^2+5\right)\left(x+1\right)\left(x-1\right)\)

d)\(\left(x+2\right)\left(x^2-2x-6\right)=x^3-2x^2-6x+2x^2-4x-12=x^3-10x-12\)

\(\Rightarrow x^3-10x-12=\left(x+2\right)\left(x^2-2x-6\right)\)

e)\(6x^3-17x^2+14x-3\)

Ta có: \(\left(ax^2+bx+c\right)\left(dx+e\right)\)

\(=adx^3+aex^2+bdx^2+bex+cdx+ce\)

\(=adx^3+\left(ae+bd\right)x^2+\left(be+cd\right)x+ce\)

Do đó:\(\left\{{}\begin{matrix}ad=6\\ae+bd=-17\\be+cd=14\\ce=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=3;b=-4\\c=1;d=2\\e=-3\end{matrix}\right.\)

Suy ra: \(6x^3-17x^2+14x-3=\left(3x^2-4x+1\right)\left(2x-3\right)\)

@Nk>↑@
7 tháng 10 2018 lúc 19:21

h)\(x^4-34x^2+225=x^4-15x^2-15x^2+225-4x^2=x^2\left(x^2-15\right)-15\left(x^2-15\right)-\left(2x\right)^2=\left(x^2-15\right)^2-\left(2x\right)^2=\left(x^2+2x-15\right)\left(x^2-2x-15\right)=\left(x^2-3x+5x-15\right)\left(x^2+5x-3x-15\right)=\left[\left(x-3\right)\left(x+5\right)\right]^2\)

@Nk>↑@
7 tháng 10 2018 lúc 19:28

i)\(x^3-5x^2y-14xy^2=x^3+2x^2y-7x^2y-14xy^2=x^2\left(x+2y\right)-7xy\left(x+2y\right)=\left(x^2-7xy\right)\left(x+2y\right)\)

Nguyen Ngoc Ha
Xem chi tiết
alibaba nguyễn
15 tháng 7 2017 lúc 10:36

Đăng 1 lúc mà nhiều thế. Lần sau đăng 1 câu thôi b.

b/ \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}=3+\sqrt{5}\)

Ta có: \(VT\ge1+2+\sqrt{5}=3+\sqrt{5}\)

Dấu = xảy ra khi \(x=2\)

c/ \(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=\sqrt{3-\left(x-1\right)^2}+\sqrt{1-\left(x+3\right)^2}\)

\(\le1+\sqrt{3}\)

Dấu = không xảy ra nên pt vô nghiệm

Câu d làm tương tự

Thùy Ninh
15 tháng 7 2017 lúc 9:59

\(a,\sqrt{x^2-4}-x^2+4=0\) 

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\) 

\(\Leftrightarrow x^2-4=\left(x-4\right)^2\) 

\(\Leftrightarrow x^2-4-x^4+8x^2-16=0\)  

\(\Leftrightarrow-x^4-7x^2-20=0\) 

\(\Leftrightarrow-\left(x^4+7x^2+\frac{49}{4}\right)-\frac{31}{4}=0\) 

\(\Leftrightarrow-\left(x^2+\frac{7}{2}\right)^2=\frac{31}{4}\) 

\(\Leftrightarrow\left(x^2+\frac{7}{2}\right)=-\frac{31}{4}\) 

\(\Rightarrow\)pt vô nghiệm

tth_new
31 tháng 12 2018 lúc 6:47

a/ĐK: \(x\ge2\)

 \(PT\Leftrightarrow x^2-4=\sqrt{x^2-4}\)

Đặt \(x^2-4=t\Rightarrow x^2=t+4\)

Thay vào,phương trình đã cho tương đương với: 

\(t=\sqrt{t}\Leftrightarrow t^2=t\Rightarrow\orbr{\begin{cases}t=1\\t=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2-4=1\\x^2-4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=5\\x^2=4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{5}\\x=2\end{cases}}\)  (t/m)

Phạm Thị Vi Hoa
Xem chi tiết
Phạm Thị Vi Hoa
24 tháng 8 2017 lúc 21:22

Giusp mk với

Tâm Phạm
Xem chi tiết
Lightning Farron
6 tháng 9 2016 lúc 12:55

a)\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)

\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)

\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+x-3=0\)

Đặt \(x-3=t\) pt thành

\(\sqrt{t\left(t-6\right)}-t=0\)

\(\Leftrightarrow t^2-6t=t^2\)

\(\Leftrightarrow t=0\)\(\Rightarrow x-3=0\Leftrightarrow x=3\)

 

Lightning Farron
6 tháng 9 2016 lúc 13:26

b)\(\sqrt{x^2-4}-x^2+4=0\)

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)

Đặt \(\sqrt{x^2-4}=t\) pt thành

\(t=t^2\Rightarrow t\left(1-t\right)=0\)

\(\Rightarrow\left[\begin{array}{nghiempt}t=1\\t=0\end{array}\right.\).

Với \(t=0\Rightarrow\sqrt{x^2-4}=0\Rightarrow x=\pm2\) 

Với \(t=1\Rightarrow\sqrt{x^2-4}=1\)\(\Rightarrow x=\pm\sqrt{5}\)

 

 

 

 

 

Isolde Moria
6 tháng 9 2016 lúc 12:47

bạn đăg từng bài thui

Thịnh Bùi Đức Phú
Xem chi tiết
vương gia kiệt
Xem chi tiết
Hoàng Diệu Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2022 lúc 13:59

a: \(\Leftrightarrow4\left(x^2+60+17x\right)\left(x^2+60+16x\right)=3x^2\)

\(\Leftrightarrow4\cdot\left[\left(x^2+60\right)^2+33x\left(x^2+60\right)+272x^2\right]=3x^2\)

=>4(x^2+60)^2+132x(x^2+60)+1085x^2=0

=>4(x^2+60)^2+62x(x^2+60)+70x(x^2+60)+1085x^2=0

=>2(x^2+60)(2x^2+120+31x)+35x(2x^2+120+31x)=0

=>(2x^2+120+35x)(2x^2+31x+120)=0

=>\(x\in\left\{\dfrac{-35\pm\sqrt{265}}{4};-\dfrac{15}{2};-8\right\}\)

b: Đặt x^2-3x=a

Phương trình sẽ là \(\dfrac{1}{a+3}+\dfrac{2}{a+4}=\dfrac{6}{a+5}\)

\(\Leftrightarrow\dfrac{a+4+2a+6}{\left(a+3\right)\left(a+4\right)}=\dfrac{6}{a+5}\)

=>(3a+10)(a+5)=6(a^2+7a+12)

=>6a^2+42a+72=3a^2+15a+10a+50

=>3a^2+17a+22=0

=>x=-2 hoặc x=-11/3

Nkjuiopmli Sv5
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 3 2019 lúc 23:04

a/ ĐKXĐ: \(x\ne2;3\)

\(\dfrac{x+3}{x-2}+\dfrac{5}{\left(x-2\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\dfrac{\left(x+3\right)\left(x-3\right)+5}{\left(x-2\right)\left(x-3\right)}=0\)

\(\Leftrightarrow x^2-9+5=0\Leftrightarrow x^2=4\Rightarrow\left[{}\begin{matrix}x=-2\\x=2\left(l\right)\end{matrix}\right.\)

b/ ĐKXĐ: \(x\ne\pm\dfrac{3}{4}\)

\(\dfrac{12x^2+30x-21}{\left(4x-3\right)\left(4x+3\right)}+\dfrac{3x-7}{4x-3}-\dfrac{6x+5}{4x+3}=0\)

\(\Leftrightarrow12x^2+30x-21+\left(3x-7\right)\left(4x+3\right)-\left(6x+5\right)\left(4x-3\right)=0\)

\(\Leftrightarrow9x-27=0\Rightarrow x=3\)

c/ ĐKXĐ: \(x\ne-1;2\)

\(\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}-\dfrac{4}{x+1}+\dfrac{2}{x-2}=0\)

\(\Leftrightarrow x+3-4\left(x-2\right)+2\left(x+1\right)=0\)

\(\Leftrightarrow-x+13=0\)

\(\Rightarrow x=13\)