Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 4 2021 lúc 18:24

\(y'=\dfrac{-4}{\left(x-1\right)^2}\)

a. \(\dfrac{2x+2}{x-1}=-2\Rightarrow2x+2=-2x+2\Rightarrow x=0\Rightarrow y'\left(0\right)=-4\)

Phương trình tiếp tuyến: \(y=-4\left(x-0\right)-2\)

b. Tiếp tuyến song song đường thẳng đã cho nên có hệ số góc k=-4

\(\Rightarrow\dfrac{-4}{\left(x-1\right)^2}=-4\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=-2\\x=2\Rightarrow y=6\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=-4\left(x-0\right)-2\\y=-4\left(x-2\right)+6\end{matrix}\right.\)

c. Gọi \(M\left(x_0;y_0\right)\) là tọa độ tiếp điểm

Pt tiếp tuyến qua M có dạng: \(y=\dfrac{-4}{\left(x_0-1\right)^2}\left(x-x_0\right)+\dfrac{2x_0+2}{x_0-1}\)

Do tiếp tuyến qua A nên:

\(3=\dfrac{-4}{\left(x_0-1\right)^2}\left(4-x_0\right)+\dfrac{2x_0+2}{x_0-1}\)

\(\Leftrightarrow x_0^2-10x_0+21=0\Rightarrow\left[{}\begin{matrix}x_0=3\Rightarrow y'\left(3\right)=-1;y\left(3\right)=4\\x_0=7;y'\left(7\right)=-\dfrac{1}{9};y\left(7\right)=\dfrac{8}{3}\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=-1\left(x-3\right)+4\\y=-\dfrac{1}{9}\left(x-7\right)+\dfrac{8}{3}\end{matrix}\right.\)

Nguyễn Việt Lâm
2 tháng 4 2021 lúc 18:26

d.

Do tiếp tuyến tạo với 2 trục tọa độ 1 tam giác vuông cân nên có hệ số góc bằng 1 hoặc -1

\(\Rightarrow\left[{}\begin{matrix}\dfrac{-4}{\left(x-1\right)^2}=1\left(vô-nghiệm\right)\\\dfrac{-4}{\left(x-1\right)^2}=-1\end{matrix}\right.\)

\(\Rightarrow\left(x-1\right)^2=4\Rightarrow\left[{}\begin{matrix}x=3\Rightarrow y=4\\x=-1\Rightarrow y=0\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn:

\(\left[{}\begin{matrix}y=-1\left(x-3\right)+4\\y=-1\left(x+1\right)+0\end{matrix}\right.\)

Ngô Chí Thành
Xem chi tiết
Hoàng Tử Hà
11 tháng 4 2021 lúc 19:41

\(x_0=1\Rightarrow y_0=1-m\)

\(y'=\dfrac{\left(mx-1\right)'\left(x-2\right)+\left(mx-1\right)\left(x-2\right)'}{\left(x-2\right)^2}=\dfrac{mx-2m+mx-1}{\left(x-2\right)^2}\)

\(\Rightarrow y'\left(1\right)=m-2m+m-1=-1\)

\(\Rightarrow pttt:y=-1\left(x-1\right)+1-m\)

\(A\left(1;-2\right)\in pttt\Rightarrow-1\left(1-1\right)+1-m=-2\Leftrightarrow m=3\)

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 4 2021 lúc 18:54

\(y'=\dfrac{-3}{\left(x-1\right)^2}\)

Gọi tiếp điểm có hoành độ \(x_0\)

Phương trình tiếp tuyến: \(y=\dfrac{-3}{\left(x_0-1\right)^2}\left(x-x_0\right)+\dfrac{2x_0+1}{x_0-1}\) (1)

a.

Tọa độ A và B có dạng: \(A\left(\dfrac{2x_0^2+2x_0-1}{3};0\right)\) ; \(B\left(0;\dfrac{2x_0^2+2x_0-1}{\left(x_0-1\right)^2}\right)\)

\(\Rightarrow OA=\left|\dfrac{2x_0^2+2x_0-1}{3}\right|;OB=\dfrac{\left|2x_0^2+2x_0-1\right|}{\left(x_0-1\right)^2}\)

\(S_{OAB}=\dfrac{1}{2}OA.OB=\dfrac{1}{6}\Rightarrow OA.OB=\dfrac{1}{3}\)

\(\Rightarrow\dfrac{\left(2x_0^2+2x_0-1\right)^2}{3\left(x_0-1\right)^2}=\dfrac{1}{3}\Rightarrow\left(2x_0^2+2x_0-1\right)^2=\left(x_0-1\right)^2\)

\(\Leftrightarrow\left(2x_0^2+3x_0-2\right)\left(2x_0^2+x_0\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x_0=0\\x_0=-\dfrac{1}{2}\\x_0=-2\\x_0=\dfrac{1}{2}\end{matrix}\right.\) 

Có 4 tiếp tuyến thỏa mãn:... (thế lần lượt các giá trị \(x_0\) vào (1) là được)

Nguyễn Việt Lâm
2 tháng 4 2021 lúc 18:57

b.

Do tiếp tuyến đi qua A nên:

\(-7=\dfrac{-3}{\left(x_0-1\right)^2}\left(5-x_0\right)+\dfrac{2x_0+1}{x_0-1}\)

\(\Leftrightarrow3x_0^2-4x_0-3=0\Rightarrow\left[{}\begin{matrix}x_0=\dfrac{2+\sqrt{13}}{3}\\x_0=\dfrac{2-\sqrt{13}}{3}\end{matrix}\right.\)

Chà, nghiệm xấu quá

Lại thay giá trị của \(x_0\) vào (1) là được 2 phương trình tiếp tuyến thỏa mãn

Ngô Chí Thành
Xem chi tiết
Hoàng Tử Hà
11 tháng 4 2021 lúc 19:11

Goi \(B\left(x_0;y_0\right)\) la tiep diem \(\Rightarrow x_0=1\Rightarrow y_0=3m\)

\(y'=3x^2-4x+3m\Rightarrow y'\left(1\right)=3-4+3m=3m-1\)

\(\Rightarrow pttt:y=\left(3m-1\right)\left(x-1\right)+3m\)

\(A\left(1;3\right)\in pttt\Rightarrow\left(3m-1\right)\left(1-1\right)+3m=3\Leftrightarrow3m=3\Leftrightarrow m=1\)

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 2 2017 lúc 3:40

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 7 2019 lúc 12:21

Đáp án A

Đồ thị hàm số y = 2 x + 1 x − 1    C  có M 1 ; 2  là giao điểm của 2 tiệm cận

Không có tiếp tuyến nào của (C) đi qua.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 7 2019 lúc 7:41

títtt
Xem chi tiết

a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{mx-1}{2x+m}=\lim\limits_{x\rightarrow+\infty}\dfrac{m-\dfrac{1}{x}}{2+\dfrac{m}{x}}=\dfrac{m}{2}\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{mx-1}{2x+m}=\lim\limits_{x\rightarrow-\infty}\dfrac{m-\dfrac{1}{x}}{2+\dfrac{m}{x}}=\dfrac{m}{2}\)

Vậy: x=m/2 là tiệm cận đứng duy nhất của đồ thị hàm số \(y=\dfrac{mx-1}{2x+m}\)

Để x=m/2 đi qua \(A\left(-1;\sqrt{2}\right)\) thì \(\dfrac{m}{2}=-1\)

=>\(m=-1\cdot2=-2\)

b: \(\lim\limits_{x\rightarrow-\infty}\dfrac{x-2}{2x-m}=\lim\limits_{x\rightarrow-\infty}\dfrac{1-\dfrac{2}{x}}{2-\dfrac{m}{x}}=\dfrac{1}{2}\)

\(\lim\limits_{x\rightarrow+\infty}\dfrac{x-2}{2x-m}=\lim\limits_{x\rightarrow+\infty}\dfrac{1-\dfrac{2}{x}}{2-\dfrac{m}{x}}=\dfrac{1}{2}\)

=>x=1/2 là tiệm cận đứng duy nhất của đồ thị hàm số \(y=\dfrac{x-2}{2x-m}\)

=>Không có giá trị nào của m để đường thẳng x=1 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{x-2}{2x-m}\)

Phan thu trang
Xem chi tiết