Cho hàm số y = x3 + 3x2 + 9x + 3 có đồ thị (C). Tìm giá trị thực của tham số k để tồn tại hai tiếp tuyến phân biệt với đồ thị (C) có cùng hệ số góc k, đồng thời đường thẳng đi qua các tiếp điểm của hai tiếp tuyến đó với (C) cắt trục Ox, Oy lần lượt tại A và B sao cho OB = 2018OA
A. 6054
B. 6024
C. 6012
D. 6042
Cho hàm số y = 2 x − 3 x − 2 có đồ thị C . Một tiếp tuyến của C cắt hai tiệm cận của C tại hai điểm A, B và A B = 2 . Hệ số góc tiếp tuyến đó bằng
A. − 2 .
B. − 2.
C. − 1 2 .
D. − 1.
Cho hai hàm số f ( x ) = a x 4 + b x 3 + c x 2 + d x + e với a ≠ 0 và g(x)= p x 2 + q x - 3 c ó đồ thị như hình vẽ bên dưới. Đồ thị hàm số y=f(x) đi qua gốc tọa độ và cắt đồ thị hàm số y=g(x) tại bốn điểm có hoành độ lần lượt là -2;-1;1 và m. Tiếp tuyến của đồ thị hàm số y=f(x)-g(x) tại điểm có hoành độ x=-2 có hệ số góc bằng -15/2. Gọi (H) là hình phẳng giới hạn bởi đồ thị hai hàm số y=f(x) và y=g(x) (phần được tô đậm trong hình vẽ). Diện tích của hình (H) bằng
A. 1553 120
B. 1553 240
C. 1553 60
D. 1553 30
Cho hàm số y = x 4 + x 2 − 3 có đồ thị (C). Khi đó hệ số góc của tiếp tuyến của đồ thị (C) tại điểm có hoành độ x = 1 là
A. -1
B. 2
C. -4
D. 6
Cho hàm số y = x 4 + x 2 − 3 có đồ thị (C). Khi đó hệ số góc của tiếp tuyến của đồ thị (C) tại điểm có hoành độ x = 1 là
A. -1.
B. 2.
C. -4.
D. 6.
Cho hàm số \(y=\frac{ax^2-bx}{x-1}\)
Tìm a và b biết rằng đồ thị (C) của hàm số đã cho đi qua điểm \(A\left(-1;\frac{5}{2}\right)\)và tiếp tuyến của (C) tại điểm O(0;0) có hệ số góc bằng -3
Cho hàm số y = a x 4 + b x 2 + c có đồ thị (C), biết rằng (C) đi qua điểm A(-1;0) tiếp tuyến d tại A của (C) cắt (C) tại hai điểm có hoành độ lần lượt là 0 và 2, diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x=0; x=2 có diện tích bằng 28 5 (phần gạch chéo trong hình vẽ). Diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x=-1; x=0 có diện tích bằng:
A. 2 5
B. 1 9
C. 2 9
D. 1 5
Cho hàm số y = a x 4 + b x 2 + c có đồ thị (C) biết rằng (C) đi qua điểm A(-1;0) tiếp tuyến d tại A của (C) cắt (C) tại hai điểm có hoành độ lần lượt là 0 và 2, diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x = 0; x = 2 có diện tích bằng 28 5 (phần gạch chéo trong hình vẽ). Diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x = − 1 ; x = 0 có diện tích bằng:
A. 2 5 .
B. 1 9 .
C. 2 9 .
D. 1 5 .
Cho hàm số \(y=\frac{ax^2-bx}{x-1}\)
Tìm a và b biết rằng đồ thị (C) của hàm số đã cho đi qua điểm \(A\left(-1;\frac{5}{2}\right)\)và tiếp tuyến của (C) tại điểm O(0;0) có hệ số góc bằng -3