Cho 2x2+2y2=5xy và 0<x<y .Tính giá trị cưa E =x+y/x-y
Cho hai đa thức N = 5 x 2 - 3 x y , M = 5 x y + 2 x 2 - 2 y 2 . Tìm đa thức P biết P + N = M
A. - 3 x 2 + 8 x y - 2 y 2
B. 7 x 2 + 2 x y - 2 y 2
C. - 3 x 2 - 8 x y + 2 y 2
D. - x 2 + 8 x y + 2 y 2
Chọn A
Ta có P + N = M ⇒ P = M - N
= 5xy + 2x2- 2y2-5x2+ 3xy
= -3x2+ 8xy - 2y2
1, Phân tích đa thức thành nhân tử:
a,f(x;y)=2x2+5xy+2y2-5x-4y+2
Tìm tất cả các bộ số nguyên dương thỏa mãn phương trình : 2x2 + 2y2 − 5xy + x − 2y + 3 = 0
giúp mình với, mình đang cần gấp
\(2x^2+2y^2-5xy+x-2y+3=0\)
\(\Leftrightarrow\left(x-2y\right)\left(2x-y\right)+x-2y+3=0\)
\(\Leftrightarrow\left(x-2y\right)\left(2x-y+1\right)=-3\)
x-2y | -3 | -1 | 1 | 3 |
2x-y+1 | 1 | 3 | -3 | -1 |
x | 1 | 5/3 | -3 | -7/3 |
y | 2 | 4/3 | -2 | -8/3 |
Vậy \(\left(x;y\right)=\left(1;2\right)\) là bộ nghiệm nguyên dương duy nhất
Cho đường tròn (C) có phương trình 2 x 2 + 2 y 2 − 3 x + 7 y + 1 = 0 . Khi đó đường tròn có tâm I và bán kính R với
A. 3 4 ; − 7 4 , R = 5 2 2
B. I − 3 4 ; 7 4 , R = 2 2
C. I 3 4 ; − 7 4 , R = 1
D. I 3 2 ; − 7 2 , R = 15
Ta có 2 x 2 + 2 y 2 − 3 x + 7 y + 1 = 0 ⇔ x 2 + y 2 − 3 2 x + 7 2 y + 1 2 = 0
⟺ ( x − 3 / 4 ) 2 + ( y + 7 / 4 ) 2 = 25 / 8 nên đường tròn có tâm I 3 4 ; − 7 4 và bán kính I 3 4 ; − 7 4
ĐÁP ÁN A
Giải phương trình nghiệm nguyên:
3x2 + 5xy - 8x -2y2 - 9y - 4 = 0
Lời giải:
PT $\Leftrightarrow 3x^2+x(5y-8)-(2y^2+9y+4)=0$
Coi đây là pt bậc 2 ẩn $x$. Để pt có nghiệm nguyên thì:
$\Delta=(5y-8)^2+12(2y^2+9y+4)=t^2$ với $t\in\mathbb{N}$)
$\Leftrightarrow 49y^2+28y+112=t^2$
$\Leftrightarrow (7y+2)^2+108=t^2$
$\Leftrightarrow 108=(t-7y-2)(t+7y+2)$
Đến đây là dạng phương trình tích đơn giản rồi. Bạn chỉ cần xét TH. Lưu ý rằng $t+7y+2>0$ và $t-7y-2, t+7y+2$ có cùng tính chẵn lẻ.
Phân tích thành nhân tử
a)x2+2y2-3xy+x-2y
b)x2+4xy+2x+3y2+6y
C)2x2+5x-12y2+12y-3-10xy
d)3x2-5xy+2y2+4x-4y
Những bài này làm như thế nào vậy có cần công thức hay mẹo gì ko hay là phải khéo léo mới làm được????
Ko hiểu thì kb vs mik
mik chỉ thêm cho
Tìm x ,y thỏa mãn: x2 + 2x2y2 + 2y2 - (x2y2 + 2x2) - 2 = 0 .
cac ban giup minh voi roi minh tick cho
Bạn vui lòng viết đề đầy đủ, và gõ bằng công thức toán để được hỗ trợ tốt hơn.
cho các số dương x,y,z thỏa mãn x+y+z=1 tìm min của biểu thức
P=√(2x2+xy+2y2) +√(2y2+yz+2z2)+ √(2z2+xz+2x2)
Ta có: \(2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x^2+2xy+y^2\right)=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\)
Theo BĐT Bunhacopxky: \(\left(x^2+y^2\right)\left(1+1\right)\ge\left(x+y\right)^2\Rightarrow\dfrac{3}{2}\left(x^2+y^2\right)\ge\dfrac{3}{4}\left(x+y\right)^2\\ \Rightarrow2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\ge\dfrac{5}{4}\left(x+y\right)^2\\ \Rightarrow\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)
Chứng minh tương tự:
\(\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)\\ \sqrt{2z^2+xz+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)
Cộng vế theo vế, ta được: \(P\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\cdot1=\sqrt{5}\)
Dấu "=" \(\Leftrightarrow x=y=z=\dfrac{1}{3}\)
Bạn tham khảo nhé
https://hoc24.vn/cau-hoi/cho-cac-so-duong-xyz-thoa-man-xyz1cmrcan2x2xy2y2can2y2yz2z2can2z2zx2x2can5.182722154737
Giải hệ pt:hệ bậc 2-2 ẩn
x2+2x-2y2=0
y2+2y-2x2=0
\(\left\{{}\begin{matrix}x^2+2x-2y^2=0\\y^2+2y-2x^2=0\end{matrix}\right.\)\(\left(1\right)-\left(2\right)\Rightarrow x^2+2x-2y^2-y^2-2y+2x^2=0\)
\(\Leftrightarrow\left(x-y\right)\left(3x+3y+2\right)=0\Leftrightarrow\left(x-y\right)3\left(x+y+\dfrac{2}{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-y=0\\x+y+\dfrac{2}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y\left(2\right)\\x=-\dfrac{2}{3}-y\left(3\right)\end{matrix}\right.\)
\(thế\left(2\right)và\left(3\right)lên-hệ-pt-rồi-giải\)