Cho pt:x2 - 2mx + m+2=0 (m là tham số)
Xác định giá trị m để phương trình đã cho có nghiệm x1,x2 thỏa mãn
x21 + 2mx2 -m2 -7m-1=0
Giúp với pls
Cho phương trình x^2 -2mx+4m-4=0 (1) , m là tham số
a)Gia phương trình với m=1
b)Tìm giá trị của m để phương trình (1) có hai nghiệm phân biệt x1,x2 thỏa mãn điều kiện x1^2 +2mx2 -8m+5=0
Cho phương trình bậc hai: x2 + 2mx + m2 + 2m + 3 = 0, với là m là tham số. Tìm các giá trị của m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn: x13+ x23 = 108
Giúp mình với ạ
Phương trình đã cho có nghiệm phân biệt khi :
\(\Delta'=m^2-\left(m^2+2m+3\right)=-2m-3>0\)
\(\Leftrightarrow m< -\dfrac{3}{2}\)(*)
Hệ thức Viette : \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=m^2+2m+3\end{matrix}\right.\)
Có \(x_1^3+x_2^3=108\)
\(\Leftrightarrow\left(x_1+x_2\right).\left(x_1^2-x_1x_2+x_2^2\right)=108\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=108\)
\(\Leftrightarrow-8m^3+6m\left(m^2+2m+3\right)=108\)
\(\Leftrightarrow m^3-6m^2-9m+54=0\)
\(\Leftrightarrow\left(m-6\right).\left(m-3\right).\left(m+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=6\\m=\pm3\end{matrix}\right.\)
Kết hợp (*) được m = -3 thỏa mãn
x2-2(m-1)x+m2-4=0 (m là tham số). tìm giá trị của m để phương trình đã cho có 2 nghiệm phân biệt x1,x2 thỏa mãn x1(x1-3)+x2(x2-3)=6
\(x^2-2\left(m-1\right)x+m^2-4=0\)
\(\Delta=b^2-4ac=\left[-2\left(m-1\right)\right]^2-4\left(m^2-4\right)\)
\(=4\left(m^2-2m+1\right)-4\left(m^2-4\right)\)
\(=4m^2-8m+4-4m^2+16\)
\(=-8m+20\)
Để pt đã cho có 2 nghiệm pb \(x_1,x_2\) thì \(\Delta>0\Leftrightarrow-8m+20>0\Leftrightarrow-8m>-20\Leftrightarrow m< \dfrac{5}{2}\)
Theo Vi-ét, ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m^2-4\end{matrix}\right.\)
Ta có : \(x_1\left(x_1-3\right)+x_2\left(x_2-3\right)=6\)
\(\Leftrightarrow x_1^2-3x_1+x^2_2-3x_2=6\)
\(\Leftrightarrow\left(x_1^2+x_2^2\right)-3\left(x_1+x_1\right)-6=0\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-3\left(x_1+x_2\right)-6=0\)
\(\Leftrightarrow\left(2m-2\right)^2-2\left(m^2-4\right)-3\left(2m-2\right)-6=0\)
\(\Leftrightarrow4m^2-8m+4-2m^2+8-6m+6-6=0\)
\(\Leftrightarrow2m^2-14m+12=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=6\left(ktm\right)\\m=1\left(tm\right)\end{matrix}\right.\)
Vậy m = 1 thì thỏa mãn đề bài.
Tìm tất cả các giá trị của tham số mm để phương trình x2−2mx+m2−m+1=0x2−2mx+m2−m+1=0 có hai nghiệm x1,x2 thỏa mãn x2^3−2x1^3+6mx1=19
Cho phương trình : x2 – 2mx + m2 – m + 1 = 0 (1) (m là tham số)
a) Giải phương trình (1) với m = 2;
b) Tìm m để phương trình (1) có 2 nghiệm x1, x2 thỏa mãn: \(x^2_1+2mx_2=9\) .
a: Khi m=2 thì pt (1) trở thành:
\(x^2-4x+3=0\)
=>(x-1)(x-3)=0
=>x=1 hoặc x=3
\(a\)) Thay \(:m=2\)
\(Pt\rightarrow x^2-4x+3=0\\ \rightarrow\left(x-1\right)\left(x-3\right)=0\\ \rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
b) Để phương trình có nghiệm
\(\rightarrow m^2-m^2+m-1\ge0\\ \rightarrow\ge1\)
\(Vi-et:\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-m+1\end{matrix}\right.\)
\(x_1\)\(^2\)\(+2mx9=9\)
\(\rightarrow x_1\)\(^2+\left(x_1+x_2\right)x_2=9\)
\(\rightarrow x_1\)\(^2+x_1x_2+x_2\)\(^2=9\)
\(\rightarrow x_1\)\(^2+2x_1x_2+x_2\)\(^2-x_1x_2=9\)
\(\rightarrow\left(x_1+x_2\right)^2-x_1x_2=9\)
\(\rightarrow4m^2-m^2+m-1=9\\ \rightarrow3m^2+m-1=9\\ \rightarrow\left[{}\begin{matrix}m=\dfrac{5}{3}\\m=-2\left(l\right)\end{matrix}\right.\)
Cho phương trình x2 +6x + 6m - m2 = 0( m là tham số). Tìm m để phương trình đã cho có 2 nghiệm thỏa mãn: x13 - x23 + 2x12 + 12x1 + 72 = 0
Giúp mình với ạ
Là sao em? Phải có yêu cầu cụ thể gì chứ?
Lời giải:
Để pt có 2 nghiệm thì:
$\Delta'=9-(6m-m^2)\geq 0\Leftrightarrow m^2-6m+9\geq 0$
$\Leftrightarrow (m-3)^2\geq 0\Leftrightarrow m\in\mathbb{R}$.
Với $x_1,x_2$ là nghiệm của pt. Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=-6\\ x_1x_2=6m-m^2\end{matrix}\right.\)
Khi đó:
\(x_1^3-x_2^3+2x_1^2+12x_1+72=0\)
\(\Leftrightarrow x_1^3-(-6-x_1)^3+2x_1^2+12x_1+72=0\)
\(\Leftrightarrow x_1^3+10x_1^2+60x_1+144=0\)
\(\Leftrightarrow (x_1+4)(x_1^2+6x_1+36)=0\)
\(\Leftrightarrow x_1=-4\) (dễ thấy \(x_1^2+6x_1+36>0\) )
\(\Leftrightarrow x_2=-6-x_1=-2\)
\(\Rightarrow 6m-m^2=x_1x_2=8\)
\(\Leftrightarrow m^2-6m+8=0\Leftrightarrow (m-4)(m-2)=0\)
\(\Leftrightarrow m=4; m=2\) (đều thỏa mãn)
Câu 1: Cho phương trình: : x2 – 2mx - 10 = 0
a) Giải phương trình khi m = 1
b) Tìm giá trị của tham số m để phương trình x2 – 2mx + 10 = 0 có hai nghiệm phân
biệt \(x1\), \(x2\) thỏa mãn \(x1^2\) + \(x2^2\) = 29
a) Khi \(m=1\) thì pt đã cho trở thành \(x^2-2x-10=0\) (*)
pt (*) có \(\Delta'=\left(-1\right)^2-\left(-10\right)=11>0\)
Do đó (*) có 2 nghiệm phân biệt \(\left[{}\begin{matrix}x_1=\dfrac{-\left(-1\right)+\sqrt{11}}{1}=1+\sqrt{11}\\x_2=\dfrac{-\left(-1\right)-\sqrt{11}}{1}=1-\sqrt{11}\end{matrix}\right.\)
b) Xét pt đã cho \(x^2-mx-10=0\) \(\left(a=1;b=-m;c=-10\right)\)
Nhận thấy \(ac=1\left(-10\right)=-10< 0\) nên pt đã cho luôn có 2 nghiệm phân biệt \(x_1,x_2\).
Áp dụng hệ thức Vi-ét, ta có \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{-m}{1}=m\\x_1x_2=\dfrac{-10}{1}=-10\end{matrix}\right.\)
Ta có \(x_1^2+x_2^2=29\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=29\Leftrightarrow m^2-2\left(-10\right)=29\)\(\Leftrightarrow m^2+20=29\Leftrightarrow m^2=9\Leftrightarrow m=\pm3\)
Vậy để pt đã cho có 2 nghiệm phân biệt thỏa mãn đề bài thì \(m=\pm3\)
Cho phương trình: x2 - 2(m-1)x+ m2 -3 =0 (1) (với x là ấn số, m là tham số).
a) Giải phương trình (1) với m=-1;
b) Xác định các giá trị của m để phương trình (1) có hai nghiệm x1; x2, thoả mãn điều kiện: x12 +2(m -1)x2 = m2 +1.
Giúp mk vs
a, Thay m=-1 vào pt ta có:
\(x^2-2\left(m-1\right)x+m^2-3=0\)
\(\Leftrightarrow x^2-2\left(-1-1\right)x+\left(-1\right)^2-3=0\\ \Leftrightarrow x^2+4x-2=0\\ \Leftrightarrow\left(x^2+4x+4\right)-6=0\\ \Leftrightarrow\left(x+2\right)^2-\sqrt{6^2}=0\\ \Leftrightarrow\left(x+2-\sqrt{6}\right)\left(x+2+\sqrt{6}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2+\sqrt{6}\\x=-2-\sqrt{6}\end{matrix}\right.\)
Cho phương trình x2 - 2mx + 2m - 1 = 0 (1). Tìm giá trị của m để hai nghiệm x1,x2 thỏa mãn: (x12 - 2mx1 + 3)(x22 - 2mx2 - 2) = 50
Ptr có nghiệm `<=>\Delta' > 0`
`<=>(-m)^2-2m+1 > 0`
`<=>(m-1)^2 > 0<=>m-1 ne 0<=>m ne 1`
`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m),(x_1.x_2=c/a=2m-1):}`
Ta có: `(x_1 ^2-2mx_1 +3)(x_2 ^2-2mx_2 -2)=50`
`<=>[x_1 ^2-(x_1+x_2)x_1+3][x_2 ^2-(x_1+x_2)x_2 -2]=50`
`<=>(-x_1.x_2+3)(-x_1.x_2-2)=50`
`<=>(1-2m+3)(1-2m-2)=50`
`<=>(4-2m)(-1-2m)=50`
`<=>-4-8m+2m+4m^2=50`
`<=>4m^2-6m-54=0`
`<=>4m^2+12m-18m-54=0`
`<=>(m+3)(4m-18)=0<=>[(m=-3),(m=9/2):}` (t/m)
PT $(*)$ là PT bậc nhất ẩn $x$ thì làm sao mà có $x_1,x_2$ được hả bạn?
PT cuối cũng bị lỗi.
Bạn xem lại đề!
Lời giải:
a)
Ta có: $\Delta'=m^2-(2m-2)=m^2-2m+2=(m-1)^2+1>0$ với mọi $m\in\mathbb{R}$
Do đó pt luôn có 2 nghiệm phân biệt $x_1,x_2$ với mọi $m\in\mathbb{R}$
b)
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=-2m\\ x_1x_2=2m-2\end{matrix}\right.\)
Để $x_1^2+x_2^2-3x_1x_2=4$
$\Leftrightarrow (x_1+x_2)^2-5x_1x_2=4$
$\Leftrightarrow (-2m)^2-5(2m-2)=4$
$\Leftrightarrow 4m^2-10m+6=0$
$\Leftrightarrow 2m^2-5m+3=0$
$\Leftrightarrow (m-1)(2m-3)=0$
$\Rightarrow m=1$ hoặc $m=\frac{3}{2}$ (đều thỏa mãn)