Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bí Mật
Xem chi tiết
Diệu Huyền
16 tháng 10 2019 lúc 10:45

Bài 2:

a, \(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)^3-3\left(x+y+z\right)\left(x+y\right)z-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)^3-3\left(x+y+z\right)\left(xy+yz+zx\right)\)

\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3xy-3yz-3zx\right]\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

ĐỖ CHÍ DŨNG
16 tháng 10 2019 lúc 10:42

2a ) Ta có:
x³ + y³ + z³ - 3xyz
= (x+y)³ - 3xy(x-y) + z³ - 3xyz
= [(x+y)³ + z³] - 3xy(x+y+z)
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z)
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy]
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= (x+y+z)(x² + y² + z² - xy - xz - yz)

_Applie05_
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
21 tháng 9 2023 lúc 22:47

`#3107`

`a)`

`A=`\(3x^4 + \dfrac{1}3xyz - 3x^4 - \dfrac{4}3xyz + 2x^2y - 6z\)

`= (3x^4 - 3x^4) + (1/3xyz - 4/3xyz) + 2x^2y - 6z`

`= -xyz + 2x^2y - 6z`

Thay `x = 1; y = 3` và `z = 1/3` vào A

`A = -1*3*1/3 + 2*1^2*3 - 6*1/3`

`= -1 + 6 - 2`

`= 6 - 3`

`= 3`

Vậy, `A=3`

`b)`

`B=`\(4x^3 - \dfrac{2}7xyz - 4x^3 - \dfrac{4}3xyz + 4x^2y\)

`= (4x^3 - 4x^3) + (-2/7xyz - 4/3xyz) + 4x^2y`

`= -34/21 xyz + 4x^2y`

Thay `x = -1; y = 2` và `z = -1/2` vào B

`B = -34/21*(-1)*2*(-1/2) + 4*(-1)^2 * 2`

`= -34/21 + 8`

`= 134/21`

Vậy, `B = 134/21`

`c)`

`C=`\(4x^2 + \dfrac{1}2xyz - \dfrac{2}3xy^2z - 5x^2yz + \dfrac{3}4xyz\)

`= 4x^2 + (1/2xyz + 3/4xyz) - 2/3xy^2z - 5x^2yz `

`= 4x^2 + 5/4xyz - 2/3xy^2z - 5x^2yz`

Ta có:

`|y| = 2`

`=> y = +-2`

Thay `x = -1; y = 2` và `z = 1/2` vào C

`4*(-1)^2 + 5/4*(-1)*2*1/2 - 2/3*(-1)*2^2*1/2 - 5*(-1)^2*2*1/2`

`= 4 - 5/4 + 4/3 - 5`

`= -11/12`

Vậy, với `x = -1; y = 2; z = 1/2` thì `B = -11/12`

Thay `x = -1; y = -2; z = 1/2`

`B = 4*(-1)^2 + 5/4*(-1)*(-2)*1/2 - 2/3*(-1)*(-2)^2*1/2 - 5*(-1)^2*(-2)*1/2`

`= 4 + 5/4 + 4/3 + 5`

`= 139/12`

Vậy, với `x = -1; y = -2; z = 1/2` thì `B = 139/12.`

Nguyễn Thị Phương Thảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 6 2022 lúc 20:28

\(A=x^2y-x^3-3xyz-4+3xyz+1=x^2y-x^3-3\)

\(=\dfrac{1}{4}\cdot4-\left(-\dfrac{1}{8}\right)-3\)

=1-3+1/8

=-2+1/8=-15/8

Trần Quốc Hoàn
Xem chi tiết

Đáp án:

P=±36

Giải thích các bước giải:

Ta có:

x2+y2+z2=16xy−yz+zx=−10⇒(x2+y2+z2)−2.(xy−yz+zx)=16−2.(−10)⇔x2+y2+z2−2xy+2yz−2zx=36⇔(x2−2xy+y2)+z2+2yz−2zx=36⇔(x−y)2+2z(y−x)+z2=36⇔(x−y)2−2.(x−y).z+z2=36⇔(x−y−z)2=36⇔x−y−z=±6P=x3−y3−z3−3xyz=(x3−3x2y+3xy2−y3)−z3+3x2y−3xy2−3xyz=(x−y)3−z3+3x2y−3xy2−3xyz=[(x−y)−z].[(x−y)2+(x−y).z+z2]+3xy(x−y−z)=(x−y−z).(x2−2xy+y2+xz−yz+z2+3xy)=(x−y−z).(x2+y2+z2+xy−yz+zx)Trường hợp 1: x−y−z=6⇒P=6.(16+(−10))=36Trường hợp 2: x−y−z=−6⇒P=(−6).(16+(−10))=−36

Vậy P=±36.

Khách vãng lai đã xóa
Mai Vân
14 tháng 7 2021 lúc 8:44

MÌNH CHỈ BIẾT LÀM B7 THÔI NHA

P= 811^3+ 812^3+815^3+3.811.812.(-815)=  31694

K ĐÚNG HỘ TỚ NHA

Khách vãng lai đã xóa
Hoàng Khôi Phong  ( ɻɛɑm...
14 tháng 7 2021 lúc 8:50

???

???

???

???

Khách vãng lai đã xóa
Nguyễn
Xem chi tiết
chuche
25 tháng 12 2022 lúc 14:05

\(x^3+y^3+z^3-3xyz\\ =\left(x^3+y^3+3x^2y+3xy^2\right)-\left(3x^2y+3xy^2\right)+z^3-3xyz\\=\left(x+y\right)^3-\left(3x^2y-3xy^2\right)+z^3-3xyz\\ =\left[\left(x+y\right)^3+z^3\right]-\left(3xy+3xy^2+3xyz\right)\\ =\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\\=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2+3xy\right]\\ \)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)

Phuoc 7b_Phan Minh
Xem chi tiết
Trần Tuấn Hoàng
8 tháng 2 2022 lúc 18:05

\(Q-\left(3x^2+xyz^3\right)=6x^2+\dfrac{11}{3}xyz^3\)

\(\Rightarrow Q=6x^2+\dfrac{11}{3}xyz^3+3x^2+xyz^3\)

\(\Rightarrow Q=\left(6x^2+3x^2\right)+\left(\dfrac{11}{3}xyz^3+xyz^3\right)\)

\(\Rightarrow Q=9x^2+\dfrac{14}{3}xyz^3\)

Emmaly
Xem chi tiết
Nguyễn Hoàng Minh
31 tháng 10 2021 lúc 10:21

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\\ =\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

Lấp La Lấp Lánh
31 tháng 10 2021 lúc 10:21

\(x^3+y^3+z^3-3xyz\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)+z^3-3x^2y-3xy^2-3xyz\)

\(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

OH-YEAH^^
31 tháng 10 2021 lúc 10:21

x3 + y3 + z3 - 3xyz

= (x+y)3 - 3xy(x-y) + z3 - 3xyz 
= [(x+y)3 + z3] - 3xy(x+y+z) 
= (x+y+z)3 - 3z(x+y)(x+y+z) - 3xy(x-y-z) 
= (x+y+z)[(x+y+z)2 - 3z(x+y) - 3xy] 
= (x+y+z)(x2 + y2 + z2 + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy) 
= (x+y+z)(x2 + y2 + z2- xy - xz - yz)

^($_DUY_$)^
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 10 2023 lúc 18:03

Sửa đề: \(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)

Bình Mạc
Xem chi tiết
✪SKTT1 NTD✪
3 tháng 10 2018 lúc 22:30

a,Ta có: 
x³ + y³ + z³ - 3xyz
= (x+y)³ - 3xy(x-y) + z³ - 3xyz 
= [(x+y)³ + z³] - 3xy(x+y+z) 
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z) 
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy] 
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy) 
= (x+y+z)(x² + y² + z² - xy - xz - yz)

b, Từ: 
x + y + z = 0 
=> x + y = -z 
<=> (x + y)^3 = (-z)^3 
<=> x^3 + 3x^2y + 3xy^2 + y^3 = -z^3 
<=> x^3 + y^3 + z^3 = -3x^2y - 3xy^2 
<=> x^3 + y^3 + z^3 = -3xy(x+y) 
<=> x^3 + y^3 + z^3 = -3xy(-z) 
<=> x^3 + y^3 + z^3 = 3xyz 

Quynh Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 12 2021 lúc 21:13

\(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)

\(=\left(x+y+z\right)\left(x^2-xy+y^2+z^2-xz-yz\right)\)

=0

Nguyễn Hoàng Tùng
21 tháng 12 2021 lúc 21:16

\(x+y+z=0\\ \Rightarrow x+y=-z\\ \Rightarrow\left(x+y\right)^3=\left(-z\right)^3\\ \Rightarrow x^3+3x^2y+3xy^2+y^3\\ \Rightarrow x^2+y^2+z^2=-3x^2y-3xy^2\\ \Rightarrow x^2+y^2+z^2=-3xy\left(x+y\right)\\ \Rightarrow x^2+y^2+z^2=-3xy\left(-z\right)=3xyz\\ \left(đpcm\right)\)