Cho biểu thức \(Q=\dfrac{2x^2+2x+2}{x^2+1}\). chứng minh:\(1\le Q\le3\)
Cho \(-1\le x\le3\) .Tìm GTNN của biểu thức:
\(A=\sqrt{-x^2+4x+12}-\sqrt{-x^2+2x+3}\)
Đk:\(-1\le x\le3\) (chính là cái bài cho kia)
Nếu \(x=0\) thì \(A=\sqrt{3}\) ta sẽ chứng minh nó là GTNN của \(A\)
Tức là ta cần chứng minh
\(\sqrt{-x^2+2x+3}+\sqrt{3}\le\sqrt{-x^2+4x+12}\)
Sau khi bình phương 2 vế rồi rút gọn ta cần chứng minh
\(\sqrt{-3\left(x^2+2x+3\right)}\le x+3\)
Từ khi \(x+3>0\), ta cần chứng minh
\(3\left(-x^2+2x+3\right)\le\left(x+3\right)^2\Leftrightarrow x^2\ge0\) (Đúng)
Vậy \(A_{Min}=\sqrt{3}\Leftrightarrow x=0\)
Cho biểu thức A =\(\dfrac{x-2}{x+1}\)và B =\(\dfrac{3}{x-2}+\dfrac{6-5x}{4-x^2}+\dfrac{2x}{x+2}\)với x\(\ne\pm2\) x\(\ne-1\)
a,Tính giá trị của A khi x =1
b,Chứng minh B =\(\dfrac{2x}{x-2}\)
c,Đặt P =A.B .Tìm x để P\(\le\) 2
a: Khi x=1 thì\(P=\dfrac{1-2}{1+2}=\dfrac{-1}{2}\)
b: \(=\dfrac{3x+6+5x-6+2x^2-4x}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x^2+4x}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x}{x-2}\)
c: \(P=A\cdot B=\dfrac{2x}{x-2}\cdot\dfrac{x-2}{x+1}=\dfrac{2x}{x+1}\)
\(P-2=\dfrac{2x-2x-2}{x+1}=\dfrac{-2}{x+1}\)
P<=2
=>x+1>0
=>x>-1
1. Chứng minh biểu thức sau dương
\(M=\dfrac{1}{3}x^2+2x+10\)
2. Chứng minh biểu thức sau âm
a) \(2x-x^2-15\)
b) \(-5-\left(x-1\right)\left(x+2\right)\)
1)
\(M=\dfrac{1}{3}x^2+2x+10\)
\(=\dfrac{1}{3}.\left(x^2+6x+30\right)\)
\(=\dfrac{1}{3}\left(x^2+2.x.3+9\right)+7\)
\(=\dfrac{1}{3}.\left(x+3\right)^2+7\) \(\ge\) 7 với \(\forall\) x
=> M luôn dương
=> đpcm
2)
a) \(2x-x^2-15\)
\(=-\left(x^2-2x+15\right)\)
\(=-\left(x^2-2x+1\right)-14\)
\(=-\left(x-1\right)^2-14\) \(\le-14\) với \(\forall\) x
=> \(2x-x^2-15\) luôn âm
=> đpcm
b) \(-5-\left(x-1\right)\left(x+2\right)\)
\(=-5-x^2-2x+x+2\)
\(=-x^2-x-3\)
\(=-\left(x^2+x+3\right)\)
\(=-\left(x^2+2.\dfrac{1}{2}.x+\dfrac{1}{4}\right)-\dfrac{11}{4}\)
\(=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{11}{4}\le-\dfrac{11}{4}\) với \(\forall\) x
=> \(-5-\left(x-1\right)\left(x+2\right)\) luôn âm
=> đpcm
\(M=\dfrac{1}{3}x^2+2x+10=\dfrac{1}{3}\left(x^2+6x+9\right)+7\)
\(=\dfrac{1}{3}\left(x+3\right)^2+7\)
Ta có:
\(\dfrac{1}{3}\left(x+3\right)^2\ge\forall x\Rightarrow\dfrac{1}{3}\left(x+3\right)^2+7>0\)
=>đpcm
\(2,a,2x-x^2-15\)
\(=-\left(x^2-2x+1\right)-14\)
\(=-\left(x-1\right)^2-14\)
Ta có:
\(-\left(x-1\right)^2\le0\forall x\Rightarrow-\left(x-1\right)^2-14< 0\)
=> đpcm
\(b,-5-\left(x-1\right)\left(x+2\right)\)
\(=-5-\left(x^2+x-2\right)\)
\(=-5-x^2-x+2\)
\(=-\left(x^2+x+\dfrac{1}{4}\right)-\dfrac{11}{4}\)
\(=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{11}{4}\)
Ta có:
\(-\left(x+\dfrac{1}{2}\right)^2\le0\forall x\Rightarrow-\left(x+\dfrac{1}{2}\right)-\dfrac{11}{4}< 0\)=> đpcm
Cho biểu thức A = ( \(\dfrac{x+1}{2x-2}\) + \(\dfrac{3}{x^2-1}\) - \(\dfrac{x+3}{2x+2}\) ) . \(\dfrac{4x^2-4}{5}\)
a, Tìm điều kiện xác định của x để biểu thức A xác định
b, Chứng minh rằng giá trị của biểu thức A không phụ thuộc vào biến x
a: DKXĐ: x<>1; x<>-1
b: \(A=\dfrac{x^2+2x+1+6-\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(=\dfrac{x^2+2x+7-x^2+x-3x+3}{1}\cdot\dfrac{2}{5}=10\cdot\dfrac{2}{5}=4\)
Rút gọn các biểu thức sau:
a) \(A=x+3+\sqrt{x^2-6x+9}\) với \(x\le3\)
b) \(B=\dfrac{\sqrt{x^2-2x+1}}{x-1}\)với \(x>1\)
c) \(C=\sqrt{x^2+4x+4}-\sqrt{x^2}\)với \(-2\le x\le0\)
-\(x+3+\sqrt{x^2-6x+9}\)
\(=x+3+\left|x\right|-6x+9\)
\(x< 0\)
\(--->x+3-x-6x+9\)
\(=\left(x-x\right)-6x+3+9\)
\(=-6x+\left(3+9\right)=-6x+12\)
\(x>0\)
\(--->3+x+x-6x+9\)
\(=\left(x+x-6x\right)+\left(3+9\right)\)
\(=\left(2x-6x\right)+12\)
\(=4x+12\)
a) A=6
b) B=1
Tìm GTNN của biểu thức sau:
\(N=\dfrac{3x}{2}+\dfrac{1}{x+1}\) với \(x>-1\)
Tìm GTLN của biểu thức:
\(Q=\left(6x+3\right)\left(5-2x\right)\) với\(\dfrac{-1}{2}\le x\le\dfrac{5}{2}\)
Tìm điều kiện x để giá trị của biểu thức được xác định và chứng minh rằng với điều kiện đó, biểu thức không phụ thuộc vào biến :
a) \(\dfrac{x-\dfrac{1}{x}}{\dfrac{x^2+2x+1}{x}-\dfrac{2x+2}{x}}\)
b) \(\dfrac{\dfrac{x}{x+1}+\dfrac{1}{x-1}}{\dfrac{2x+2}{x-1}-\dfrac{4x}{x^2-1}}\)
c) \(\dfrac{1}{x-1}-\dfrac{x^3-x}{x^2+1}.\left(\dfrac{x}{x^2-2x+1}-\dfrac{1}{x^2-1}\right)\)
d) \(\left(\dfrac{x}{x^2-36}-\dfrac{x-6}{x^2+6x}\right):\dfrac{2x-6}{x^2+6x}+\dfrac{x}{6-x}\)
Bài 1) Tìm GTLN của các biểu thức sau ( sử dụng bất đẳng thức Côsi)
a) P= \(\sqrt{\left(x+2\right)\left(3-x\right)}\); với \(-2\le x\le3\)
b) P= \(\sqrt{\left(x+2\right)\left(5x-2\right)}\); với \(-2\le x\le\dfrac{5}{2}\)
c) P= \(\sqrt{\left(2x+1\right)\left(5-3x\right)}\); với \(-\dfrac{1}{2}\le x\le\dfrac{5}{3}\)
( CÁC BẠN GIÚP MÌNH VỚI, ĐANG CẦN GẤP )
Cho biểu thức \(A=\left(\dfrac{2x-1}{2x+1}-\dfrac{1}{4x^2-1}\right)\dfrac{2x-1}{x-1}+\dfrac{2}{2x+1}\)
a) Tìm điều kiện của x để biểu thức A có nghĩa
b) Chứng tỏ giá trị của biểu thức A k phụ thuộc vào biến x
a: ĐKXĐ: \(x\notin\left\{1;-\dfrac{1}{2};\dfrac{1}{2}\right\}\)
b: \(A=\dfrac{4x^2-4x+1-1}{\left(2x+1\right)\left(2x-1\right)}\cdot\dfrac{2x-1}{x-1}+\dfrac{2}{2x+1}\)
\(=\dfrac{4x\left(x-1\right)}{\left(2x+1\right)\left(x-1\right)}+\dfrac{2}{2x+1}\)
\(=\dfrac{4x+2}{2x+1}=2\)