Cho a,b là các số thực thỏa mãn
\(\lim\limits_{ }\dfrac{an^3+bn^2+2n+4}{n^2+1}=1\) . Tìm a,b
cho a, b là các số thực thỏa mãn lim \(\dfrac{an^3+bn^2+2n+4}{n^2+1}=1\). tính tổng 2a+b?
Nếu \(a\ne0\Rightarrow\lim\dfrac{an^3+bn^2+2n+4}{n^2+1}=\lim\dfrac{an+b+\dfrac{2}{n}+\dfrac{4}{n^2}}{1+\dfrac{1}{n}}=\infty\) ko thỏa mãn
\(\Rightarrow a=0\)
Khi đó: \(\lim\dfrac{bn^2+2n+4}{n^2+1}=\lim\dfrac{b+\dfrac{2}{n}+\dfrac{4}{n^2}}{1+\dfrac{1}{n^2}}=b\Rightarrow b=1\)
\(\Rightarrow2a+b=1\)
Tìm các số thực a, b thỏa mãn \(\lim\limits_{x\rightarrow1}\)\(\dfrac{2x^2+ax+b}{x^2+2x-3}=\dfrac{3}{4}\)
\(x^2+2x-3=0\) có nghiệm \(x=1\) nên giới hạn đã cho hữu hạn khi \(2x^2+ax+b=0\) cũng có nghiệm \(x=1\)
\(\Rightarrow2.1^2+a.1+b=0\Rightarrow a+b+2=0\Rightarrow b=-a-2\)
Thay vào:
\(\lim\limits_{x\rightarrow1}\dfrac{2x^2+ax-a-2}{x^2+2x-3}=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(2x+2\right)+a\left(x-1\right)}{\left(x-1\right)\left(x+3\right)}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(2x+2+a\right)}{\left(x-1\right)\left(x+3\right)}=\lim\limits_{x\rightarrow1}\dfrac{2x+2+a}{x+3}=\dfrac{4+a}{4}=\dfrac{3}{4}\)
\(\Rightarrow4+a=3\Rightarrow a=-1\Rightarrow b=-a-2=-1\)
Tìm các số thưc a,b thỏa mãn \(\lim\limits_{x\rightarrow1}\left(\dfrac{2x^2+ax+b}{x^2-1}\right)=\dfrac{1}{4}\)
Giới hạn đã cho hữu hạn khi \(2x^2+ax+b=0\) có nghiệm \(x=1\)
\(\Rightarrow2+a+b=0\Rightarrow b=-a-2\)
Ta được: \(\lim\limits_{x\rightarrow1}\dfrac{2x^2+ax-a-2}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{2\left(x-1\right)\left(x+1\right)+a\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(2x+2+a\right)}{\left(x-1\right)\left(x+1\right)}=\lim\limits_{x\rightarrow1}\dfrac{2x+2+a}{x+1}\)
\(=\dfrac{4+a}{2}=\dfrac{1}{4}\)
\(\Rightarrow a=-\dfrac{7}{2}\Rightarrow b=\dfrac{3}{2}\)
tìm giới hạn của dãy số
1.\(\lim\limits_{n->\infty}\left(\sqrt[3]{n^3+n^2+n+1}-n\right)\)
2.\(\lim\limits_{n->\infty}\left(\sqrt{n^2+n}-\sqrt{n^2-n+1}\right)\)
3.tìm a,b để \(\lim\limits_{n->\infty}\left(\sqrt{an^2+bn+2}-2n\right)=2\)
1: \(\lim\limits_{n\rightarrow\infty}\left(\sqrt[3]{n^3+n^2+n+1}-n\right)\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^3+n^2+n+1-n^3}{\sqrt[3]{\left(n^3+n^2+n+1\right)^2}+n\cdot\sqrt[3]{n^3+n^2+n+1}+n^2}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2+n+1}{n^2\cdot\sqrt[3]{\left(1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}\right)^2}+n^2\cdot\sqrt[3]{1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}}+n^2}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{1+\dfrac{1}{n}+\dfrac{1}{n^2}}{\sqrt[3]{\left(1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}\right)^2}+\sqrt[3]{1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}}+1}\)
\(=\dfrac{1}{1+1+1}=\dfrac{1}{3}\)
2: \(\lim\limits_{n\rightarrow\infty}\left(\sqrt{n^2+n}-\sqrt{n^2-n+1}\right)\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2+n-n^2+n-1}{\sqrt{n^2+n}+\sqrt{n^2-n+1}}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{2n-1}{\sqrt{n^2+n}+\sqrt{n^2-n+1}}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{2-\dfrac{1}{n}}{\sqrt{1+\dfrac{1}{n}}+\sqrt{1-\dfrac{1}{n}+\dfrac{1}{n^2}}}\)
\(=\dfrac{2}{1+1}=\dfrac{2}{2}=1\)
tìm các số thực a,b thoả mãn \(\lim\limits_{x\rightarrow1}\left(\dfrac{x^2+ax+b}{x^2-1}\right)=-\dfrac{1}{2}\)
Tìm các số thực a, b thoả mãn:
\(\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left[\left(a^3+b^3\right)x^2-\left(x+a^2b\right)\sqrt{x^2+2\left(ab\right)^2}\right]}{x-b-1}\)
cho a, b là hai số thực để giới hạn \(lim\left(\dfrac{n^4+bn^3}{\left(n+1\right)\left(n+2\right)}-an^2\right)\) bằng số hữu hạn. tính a+b?
1) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{6n-8}{n-1}\)
2) \(\lim\limits_{n\rightarrow\infty}\dfrac{n^2+5n-3}{4n^3-2n+5}\)
3) \(\lim\limits_{n\rightarrow\infty}\left(-2n^5+4x^4-3n^2+4\right)\)
1) \(\lim\limits_{n\rightarrow\infty}\dfrac{6n-8}{n-1}=\lim\limits_{n\rightarrow\infty}\dfrac{2n\left(1-\dfrac{4}{n}\right)}{n\left(1-\dfrac{1}{n}\right)}=2\)
2) \(\lim\limits_{n\rightarrow\infty}\dfrac{n^2+5n-3}{4n^3-2n+5}=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(1+\dfrac{5}{n}-\dfrac{3}{n^2}\right)}{n^3\left(4-\dfrac{2}{n^2}+\dfrac{5}{n^3}\right)}=\dfrac{1}{4n}=\infty\)
3) \(\lim\limits_{n\rightarrow\infty}\left(-2n^5+4n^4-3n^2+4\right)=\lim\limits_{n\rightarrow\infty}n^5\left(-2+\dfrac{4}{n}-\dfrac{3}{n^2}+\dfrac{4}{n^5}\right)=-2n^5=-\infty\)