Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mèo Mun
Xem chi tiết
Phan Đức Trung Hiếu
26 tháng 1 2023 lúc 13:46

Để giải hệ phương trình {x−5y=−24, x=3y}, ta có thể sử dụng các bước sau:

Chuyển đổi hệ phương trình thứ hai thành dạng x = 3y: x = 3y

Dùng hệ phương trình thứ hai để thay thế x trong hệ phương trình thứ nhất: x−5y=−24 => 3y-5y = -24 => -2y = -24 => y = 12

Dùng hệ phương trình thứ hai và giá trị y đã tìm được để tìm giá trị x: x = 3y => x = 3(12) => x = 36

Vậy, giải của hệ phương trình là (x, y) = (36, 12)

 
Lê Phương Mai
26 tháng 1 2023 lúc 14:26

\(\left\{{}\begin{matrix}x-5y=-24\\x=3y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y-5y=-24\\x=3y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2y=-24\\x=3y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=12\\x=36\end{matrix}\right.\)

tnmq
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 1 2024 lúc 21:11

ĐKXĐ: \(x\ge1\)

Đặt \(\left\{{}\begin{matrix}\sqrt[]{x-1}=a\ge0\\\sqrt[3]{2-x}=b\end{matrix}\right.\) \(\Rightarrow a^2+b^3=1\)

Ta được hệ: 

\(\left\{{}\begin{matrix}a+b=1\\a^2+b^3=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=1-a\\a^2+b^3=1\end{matrix}\right.\)

\(\Rightarrow a^2+\left(1-a\right)^3=1\)

\(\Leftrightarrow a^3-4a^2+3a=0\)

\(\Leftrightarrow a\left(a-1\right)\left(a-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=0\\a=1\\a=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt[]{x-1}=0\\\sqrt[]{x-1}=1\\\sqrt[]{x-1}=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=10\end{matrix}\right.\)

Lê Quỳnh Chi Phạm
Xem chi tiết
HT.Phong (9A5)
15 tháng 3 2023 lúc 15:38

a) \(2x-6=0\)

\(\Leftrightarrow2x=6\)

\(\Leftrightarrow x=\dfrac{6}{2}=3\)

b) \(x^2-4x=0\)

\(\Leftrightarrow x\left(x-4\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

 

Hacker lỏd
Xem chi tiết
Lam Phương
Xem chi tiết
YangSu
3 tháng 6 2023 lúc 20:35

\(x^2-2x+m=0\)

\(\Delta=b^2-4ac=\left(-2\right)^2-4m=4-4m\)

Để pt có 2 nghiệm \(x_1,x_2\) thì \(\Delta>0\Leftrightarrow4-4m>0\Leftrightarrow-4m>-4\Leftrightarrow m< 1\)

Theo Vi-ét, ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\\x_1x_2=\dfrac{c}{a}=m\end{matrix}\right.\)

Ta có : \(2\left(x_1x_2\right)^2-x_1=6+x_2\) 

\(\Leftrightarrow2\left(x_1x_2\right)^2-x_1-x_2-6=0\)

\(\Leftrightarrow2\left(x_1x_2\right)^2-\left(x_1+x_2\right)-6=0\)

\(\Leftrightarrow2m^2-2-6=0\)

\(\Leftrightarrow2m^2=8\)

\(\Leftrightarrow m^2=4\)

\(\Leftrightarrow\left[{}\begin{matrix}m=2\left(ktm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)

Vậy \(m=-2\) thì thỏa mãn đê bài.

Kim Chi
Xem chi tiết
Trần Minh Hoàng
28 tháng 5 2021 lúc 19:33

Để pt có 2 nghiệm thì \(\Delta'=m^2-4\ge0\Leftrightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\).

Khi đó theo hệ thức Viète ta có \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4\end{matrix}\right.\).

Ta có \(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\)

\(\Leftrightarrow\left(2m\right)^2-2.4+2.2m=0\Leftrightarrow m^2+m-2=0\Leftrightarrow\left(m-1\right)\left(m+2\right)=0\Leftrightarrow\left[{}\begin{matrix}m=1\left(l\right)\\m=-2\left(TM\right)\end{matrix}\right.\).

Vậy m = -2.

Kim Chi
28 tháng 5 2021 lúc 19:30

Mn ơi giúp mình với ạ❤

missing you =
28 tháng 5 2021 lúc 19:43

 bổ sung đề: \(x^2-2mx+4=0\)(1)

\(\Delta'=\left(-m\right)^2-4=m^2-4\)

để pt (1) có 2 nghiệm x1,x2 khi \(\Delta'>0< =>m^2-4>0\)

\(< =>\left(m-2\right)\left(m+2\right)>0\)

<=>\(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)thì pt (1) có 2 nghiệm x1,x2

theo vi ét=>\(\left\{{}\begin{matrix}x1+x2=2m\\x1.x2=4\end{matrix}\right.\)

có \(\left(x1+1\right)^2+\left(x2^{ }+1\right)^2=2\)

\(< =>x1^2+2x1+1+x2^2+2x2+1-2=0\)

\(< =>\left(x1+x2\right)^2-2x1x2+2\left(x1+x2\right)=0\)

\(< =>2m^2-2.4+2.2m=0\)

\(< =>2m^2+4m-8=0\)

\(\Delta1=4^2-4\left(-8\right)2=80>0\)

\(m1=\dfrac{-4+\sqrt{80}}{4}=-1+\sqrt{5}\)(loại)

m2=\(\dfrac{-4-\sqrt{80}}{4}=-1-\sqrt{5}\)(TM)

vậy...

Ricardo Gaylord :>)
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 12 2020 lúc 0:32

\(\Delta'=\left(m-1\right)^2-2\left(m^2-1\right)=-m^2-2m+3>0\)

\(\Rightarrow-3< m< 1\)

Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\left(m-1\right)\\x_1x_2=\dfrac{m^2-1}{2}\end{matrix}\right.\)

\(P=\left(x_1-x_2\right)^2=x_1^2+x_2^2-2x_1x_2\)

\(P=x_1^2+x_2^2+2x_1x_2-4x_1x_2=\left(x_1+x_2\right)^2-4x_1x_2\)

\(P=\left(m-1\right)^2-4\left(\dfrac{m^2-1}{2}\right)\)

\(P=-m^2-2m+3=-\left(m^2+2m+1\right)+4\) 

\(P=-\left(m+1\right)^2+4\le4\)

\(P_{max}=4\) khi \(m+1=0\Leftrightarrow m=-1\) (thỏa mãn)

Phạm Trà My
Xem chi tiết
D.S Gaming
Xem chi tiết
Lê Quỳnh Chi Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 3 2023 lúc 0:30

 

loading...