Để pt có 2 nghiệm thì \(\Delta'=m^2-4\ge0\Leftrightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\).
Khi đó theo hệ thức Viète ta có \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4\end{matrix}\right.\).
Ta có \(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\)
\(\Leftrightarrow\left(2m\right)^2-2.4+2.2m=0\Leftrightarrow m^2+m-2=0\Leftrightarrow\left(m-1\right)\left(m+2\right)=0\Leftrightarrow\left[{}\begin{matrix}m=1\left(l\right)\\m=-2\left(TM\right)\end{matrix}\right.\).
Vậy m = -2.
bổ sung đề: \(x^2-2mx+4=0\)(1)
\(\Delta'=\left(-m\right)^2-4=m^2-4\)
để pt (1) có 2 nghiệm x1,x2 khi \(\Delta'>0< =>m^2-4>0\)
\(< =>\left(m-2\right)\left(m+2\right)>0\)
<=>\(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)thì pt (1) có 2 nghiệm x1,x2
theo vi ét=>\(\left\{{}\begin{matrix}x1+x2=2m\\x1.x2=4\end{matrix}\right.\)
có \(\left(x1+1\right)^2+\left(x2^{ }+1\right)^2=2\)
\(< =>x1^2+2x1+1+x2^2+2x2+1-2=0\)
\(< =>\left(x1+x2\right)^2-2x1x2+2\left(x1+x2\right)=0\)
\(< =>2m^2-2.4+2.2m=0\)
\(< =>2m^2+4m-8=0\)
\(\Delta1=4^2-4\left(-8\right)2=80>0\)
\(m1=\dfrac{-4+\sqrt{80}}{4}=-1+\sqrt{5}\)(loại)
m2=\(\dfrac{-4-\sqrt{80}}{4}=-1-\sqrt{5}\)(TM)
vậy...