D=(cos4x-tanx)/cos2x
GPT
a) \(sin\left(\pi cos2x\right)=1\)
b) \(\left(cos4x-1\right)\left(1+cot^2x\right)=0\)
c) \(\frac{cos2x-1}{1-cosx}=0\)
d) \(\frac{cos2x}{tanx-1}=0\)
a.
\(\Leftrightarrow\pi cos2x=\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow cos2x=\frac{1}{2}+2k\)
Do \(-1\le cos2x\le1\Rightarrow-1\le\frac{1}{2}+2k\le1\)
\(\Rightarrow k=0\)
\(\Rightarrow cos2x=\frac{1}{2}\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k2\pi\\x=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
b.
\(\Leftrightarrow cos4x=1\)
\(\Leftrightarrow4x=k2\pi\)
\(\Leftrightarrow x=\frac{k\pi}{2}\)
c.
ĐKXĐ: \(cosx\ne1\)
\(\Leftrightarrow cos2x-1=1-cosx\)
\(\Leftrightarrow2cos^2x-1-1=1-cosx\)
\(\Leftrightarrow2cos^2x+cosx-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\left(l\right)\\cosx=-\frac{3}{2}< -1\left(l\right)\end{matrix}\right.\)
Vậy pt đã cho vô nghiệm
d.
ĐKXĐ: \(\left\{{}\begin{matrix}cosx\ne0\\tanx\ne1\end{matrix}\right.\)
\(\Leftrightarrow cos2x=tanx-1\)
\(\Leftrightarrow cos^2x-sin^2x=\frac{sinx}{cosx}-1\)
\(\Leftrightarrow\left(cosx-sinx\right)\left(cosx+sinx\right)=\frac{cosx-sinx}{-cosx}\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx-sinx=0\Leftrightarrow tanx=1\left(l\right)\\cosx+sinx=-\frac{1}{cosx}\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow cos^2x+sinx.cosx=-1\)
\(\Leftrightarrow\frac{1}{2}+\frac{1}{2}cos2x+\frac{1}{2}sin2x=-1\)
\(\Leftrightarrow cos2x+sin2x=-3\)
Do \(\left\{{}\begin{matrix}cos2x\ge-1\\sin2x\ge-1\end{matrix}\right.\) \(\Rightarrow cos2x+sin2x\ge-2>-3\)
\(\Rightarrow\left(1\right)\) vô nghiệm
Vậy pt đã cho vô nghiệm
a. cho sin a + cos a = \(\frac{-1}{3}\)tính sin a .cos a
b. chứng minh đẳng thức \(\frac{sin4x}{1+cos4x}.\frac{cos2x}{1+cos2x}=tanx\)
CHỨNG MINH ĐẲNG THỨC
a/ Chứng minh rằng: \(\frac{sin4x-sin2x}{1-cos2x+cos4x}=tanx\)( với x là giá trị để biểu thức có nghĩa)
b/ Cho x ≠ k\(\frac{\pi}{4}\) , kϵ Z . Chứng minh đẳng thức sau:\(\frac{1-cos4x}{sin4x}=tanx\)
\(\frac{sin4x-sin2x}{1-cos2x+cos4x}=\frac{2sin2x.cos2x-sin2x}{1-cos2x+2cos^22x-1}=\frac{sin2x\left(2cos2x-1\right)}{cos2x\left(2cos2x-1\right)}=\frac{sin2x}{cos2x}=tan2x\)
\(\Rightarrow\) đề sai
b/
\(\frac{1-cos4x}{sin4x}=\frac{1-\left(1-2sin^22x\right)}{2sin2x.cos2x}=\frac{2sin^22x}{2sin2x.cos2x}=\frac{sin2x}{cos2x}=tan2x\)
Đề sai tiếp lần 2
Đơn giản biểu thức:
1. A=Sinx.Cosx.Cos2x
2. B=Sin4x - Cos4x
3. C=Sinx.Cos2x.Cos4x.Cos8x.Cos16x
4. D=\(\dfrac{Cos4x-Tanx}{Cos2x}\)
5. E=sin4x-6sin2x.cos2x+cos4x
6. F=\(\dfrac{Sin2x}{Sinx}-\dfrac{Cos2x}{Cosx}\)
giải các pt
a) \(tanx-\frac{\sqrt{2}}{cosx}=1\)
b) \(\frac{2sinx-1}{cos4x}+\frac{2sinx-1}{sin4x-1}=0\)
c) \(sin\left(x+\frac{\pi}{4}\right)-cos\left(x-\frac{\pi}{4}\right)=1\)
d) \(\frac{sin2x-2cos2x-5}{2sin2x-cos2x-6}=0\)
a/ ĐKXĐ:...
\(\Leftrightarrow\frac{sinx}{cosx}-\frac{\sqrt{2}}{cosx}=1\)
\(\Leftrightarrow sinx-\sqrt{2}=cosx\)
\(\Leftrightarrow sinx-cosx=\sqrt{2}\)
\(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=\sqrt{2}\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=1\)
\(\Leftrightarrow x-\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\frac{3\pi}{4}+k2\pi\)
b/
ĐKXĐ: ...
\(\Leftrightarrow\left(2sinx-1\right)\left(sin4x-1\right)+cos4x\left(2sinx-1\right)=0\)
\(\Leftrightarrow2sinx.sin4x-2sinx-sin4x+1+2sinx.cos4x-cos4x=0\)
\(\Leftrightarrow2sinx\left(sin4x+cos4x\right)-\left(sin4x+cos4x\right)-\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(sin4x+cos4x\right)-\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(sin4x+cos4x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sin4x+cos4x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sin\left(4x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\4x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\4x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=\frac{k\pi}{2}\\x=\frac{\pi}{8}+\frac{k\pi}{2}\left(l\right)\end{matrix}\right.\)
c/
\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}-\frac{\pi}{4}\right)=1\)
\(\Leftrightarrow sinx=\frac{\sqrt{2}}{2}\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k2\pi\\x=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
d/
\(\Leftrightarrow sin2x-2cos2x-5=2sin2x-cos2x-6\)
\(\Leftrightarrow sin2x+cos2x=1\)
\(\Leftrightarrow\sqrt{2}sin\left(2x+\frac{\pi}{4}\right)=1\)
\(\Leftrightarrow sin\left(2x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)
\(\Rightarrow\left[{}\begin{matrix}2x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\2x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{4}+k\pi\end{matrix}\right.\)
c/
Hình như câu này đề sai
\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)-\sqrt{2}cos\left(x-\frac{\pi}{4}\right)=\sqrt{2}\)
\(\Leftrightarrow sinx+cosx-\left(sinx+cosx\right)=\sqrt{2}\)
\(\Leftrightarrow0=\sqrt{2}\)
Pt vô nghiệm
d/ Hình như câu này đề cũng sai
\(\Leftrightarrow sin2x-2cos2x-5=0\)
\(\Leftrightarrow\frac{1}{\sqrt{5}}sin2x-\frac{2}{\sqrt{5}}cos2x=\sqrt{5}\)
\(\Leftrightarrow sin\left(2x-a\right)=\sqrt{5}\) (với \(sina=\frac{2}{\sqrt{5}};cosa=\frac{1}{\sqrt{5}}\))
Pt vô nghiệm do \(\sqrt{5}>1\)
cos2x + cos4x + cos6x = 0
1 + cosx + cos2x + cos3x = 0
sin3x - sinx = cos3x - cosx
a. cos2x + cos4x + cos6x = 0
\(\Leftrightarrow\left(cos2x+cos6x\right)+cos4x=0\\ \Leftrightarrow2cos4x.cos2x+cos4x=0\\ \Leftrightarrow cos4x\left(2cos2x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos2x=\dfrac{-1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\\x=\pm\dfrac{\pi}{3}+k\pi\end{matrix}\right.\left(k\in Z\right)}\)
1.
\(cos2x+cos6x+cos4x=0\)
\(\Leftrightarrow2cos4x.cos2x+cos4x=0\)
\(\Leftrightarrow cos4x\left(2cos2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos2x=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=\dfrac{\pi}{2}+k\pi\\2x=\pm\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\\x=\pm\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)
2.
\(\Leftrightarrow1+cos2x+cosx+cos3x=0\)
\(\Leftrightarrow1+2cos^2x-1+2cos2x.cosx=0\)
\(\Leftrightarrow cos^2x+cos2x.cosx=0\)
\(\Leftrightarrow cosx\left(cos2x+cosx\right)=0\)
\(\Leftrightarrow cosx\left(2cos^2x+cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=-1\\cosx=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\pi+k2\pi\\x=\pm\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
Chung minh. 1-cos2x/1+cos2x=tan^2x
Bien doi thanh tich
a, A= sina +sinb+sin(a+b)
b, B=cosa +cosb +cos(a+b)+1
c, C= 1 + sina + cosa
d. D = sinx + sin3x +sin5x+sin7x
Chứng minh
a, sinx*sin(pi/3-x)*sin(pi/3+x)=1/4sin3x
b, cosx*cos(pi/3-x)*cos(pi/3+x)=1/4cos3x
c, cos5x*cos3x+sin7x*sinx=cos2x *cos4x
d, sin5x -2sinx(cos2x+cos4x)=sinx
\(\dfrac{\sqrt{2}\left(sinx-cox\right)^2\left(1+2sin2x\right)}{sin3x+sin5x}=1-tanx\)
\(sin\left(2x-\dfrac{\pi}{4}\right)cos2x-2\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)=0\)
(sin2x+cos2x)cosx+2cos2x -sinx=0
sinx + cosxsin2x + \(\sqrt{3}cos3x=2\left(cos4x+sin^3x\right)\)
\(\sqrt{3}cos5x-2sin3xcos2x-sinx=0\)