so sánh phân số :
\(\dfrac{2001}{2000}và\dfrac{2002}{2001}\)
So sánh hai biểu thức A và B biết rằng
A = 2000/2001 + 2001/2002
B = 2000+2001/2001+2002
Lm hộ mk nha. Ths
Ta có: 2000/2001>1/2 ; 2001/2002>1/2
=>A=1/2+1/2=1=>A>1
B=2000+2001/2001+2002=4001/4003<1
A>1;B<1
=>A>B
Vậy A>B
Ta có: 2000/2001>1/2 ; 2001/2002>1/2
=>A=1/2+1/2=1=>A>1
B=2000+2001/2001+2002=4001/4003<1
A>1;B<1
=>A>B
Vậy A>B
Ta có: 2000/2001>1/2 ; 2001/2002>1/2
=>A=1/2+1/2=1=>A>1
B=2000+2001/2001+2002=4001/4003<1
A>1;B<1
=>A>B
Vậy A>B
So sánh 2000/2001+ 2001/2002+...+2015/2016 và 15
2000/2001<1
2001/2002<1
2002/2003<1
...
2015/2016<1
=>2000/2001+2001/2002+2002/2003+2003/2004+...+2015/2016<1+1+1+1+1+...+1=15
Vậy...
Ta có:
2000/ 2001 < 1
2001/2002 < 1
..................
2015/ 2016<1
=> 200/2001 + 2001/202+...+ 2015/2016 < 1 + 1+1 +1+...+1( 15 số hạng)
=> 200/2001 + 2001/202+...+ 2015/2016< 1 x 15 = 15
So sánh hai biểu thức A và B biết rằng :
\(A=\dfrac{2000}{2001}+\dfrac{2001}{2002}\) \(B=\dfrac{2000+2001}{2001+2002}\)
So sánh hai biểu thức A và B biết rằng:
[Math Processing Error]A=20002001+20012002
[Math Processing Error]B=2000+20012001+2002
Hướng dẫn làm bài:
Ta có: [Math Processing Error]20002001>20002001+2002 (cùng tử, phân số nào có mẫu lớn hơn thì nhỏ hơn)
[Math Processing Error]20012002>20012001+2002 (cùng tử, phân số nào có mẫu lớn hơn thì nhỏ hơn)
Cộng vế với vế ta được:
[Math Processing Error]20002001+20012002>20002001+2002+20012001+2002
Vậy A > B
So sánh hai biểu thức A và B biết rằng :
\(A = \dfrac{2000}{2001} + \dfrac{2001}{2002}\) ; \(B = \dfrac{2000 + 2001}{2001 + 2002}\)
\(B = \dfrac{2000 + 2001}{2001 + 2002} = \dfrac{4001}{4003} \) (1)
\(A = \dfrac{2000}{2001} + \dfrac{2001}{2002}\) > \(\dfrac{2000}{2002} + \dfrac{2001}{2002} > \dfrac{4001}{2002}\) (2)
Từ (1) và (2) \(\Rightarrow\) A > B
so sánh A và B mà không cần tính:
A=\(\dfrac{2000}{2001}\)+\(\dfrac{2001}{2002}\)
B=\(\dfrac{200+2001}{2001+2002}\)
Ta có : \(\dfrac{2000}{2001}>\dfrac{2000}{2001+2002}\)
\(\dfrac{2001}{2002}>\dfrac{2001}{2001+2002}\)
\(\Rightarrow\) \(\dfrac{2000}{2001}+\dfrac{2001}{2002}>\dfrac{2000+2001}{2001+2002}\)
Vậy A > B
mình viết nhầm nhé
B=\(\dfrac{2000+2001}{2001+2002}\)
\(A=\dfrac{2000}{2001}+\dfrac{2001}{2002}>\dfrac{2000}{2002}+\dfrac{2001}{2002}=\dfrac{2000+2001}{2002}>\dfrac{2000+2001}{2001+2002}\)
So sánh phân số \(\dfrac{2001}{2002}\)và\(\dfrac{2021}{2003}\)
Ta có:
\(\dfrac{2001}{2002}< 1\)
\(1< \dfrac{2021}{2003}\)
\(\Rightarrow\dfrac{2001}{2002}< \dfrac{2021}{2003}\)
#Đang Bận Thở
Vì 2001 < 2002
=> 2001/2002 < 1 ( 1 )
có 2021 > 2003
=> 2021/2003 > 1 ( 2 )
Từ ( 1 ) và ( 2 ) => 2001/2002 < 2021/2003
1) So sánh bằng cahcs nhanh nhất
-13/38 và 29/-88
2) Cho a, b thuộc Z; b>0. So sánh 2 số hữu tỉ a/b và a+2001/b+2001
Ta có: 1/3 = 13/39
=> 13/38 > 13/39 = 1/3
1/3 = 29/87
=> 29/88 <29/87=1/3
Vì 13/38 >1/3 > 29/88 nên -13/38 < -1/3 < -29/88
Vậy -13/38 < -29/88
b)Qui đồng mẫu số:
a/b = a(b+2001) / b(b+2001) = ab + 2001a / b(b+2001)
a+2001 / b + 2001 = (a+2001)b / (b + 2001)b = ab + 2001b / b(b+2001)
Vì b>0 nên mẫu số của hai phân số trên dương. Chỉ cần so sánh tử số.
So sánh ab + 2001a với ab + 2001b
- Nếu a < b => tử sổ phân số thứ nhất < tử số phân số thứ hai
=> a/b < a+2001/b+2001
- Nếu a = b => hai phân số bằng nhau = 1
- Nếu a > b => Tử số phân số thứ nhất lớn hơn tử số phân số thứ hai
=> a/b > a+2001/ b +2001
qui đòng mẫu số ta có:
\(\frac{a}{b}=\frac{a\left(b+2001\right)}{b\left(b+2001\right)}=\frac{ab+2001a}{b\left(b+2001\right)}\)
\(\frac{a+2001}{b+2001}=\frac{\left(a+2001\right)b}{\left(b+2001\right)b}=\frac{ab+2001b}{b\left(b+2001\right)}\)
vì b>0 nên mẫu số của 2 phân số trên đều dương . chỉ cần so sánh tử số
so sánh ab+2001a với ab+2001b
- nếu a<b => tử số phân số thứ 1 < tử số phân số thứ 2
=> \(\frac{a}{b}< \frac{a+2001}{b+2001}\)
- nếu a=b thì 2 phân số = nhau và =1
-nếu a>b =>tử số phân số thứ nhất lớn hơn tử số phân số thứ 2
=>\(\frac{a}{b}>\frac{a+2001}{b+2001}\)
So sánh phân số
\(\dfrac{5}{6}\) và \(\dfrac{7}{8}\)
Cộng Phân Số
\(\dfrac{9}{4}+\dfrac{3}{5}\)
So sánh:
\(\frac{5}{6}=\frac{5\times4}{6\times4}=\frac{20}{24}\)
\(\frac{7}{8}=\frac{7\times3}{8\times3}=\frac{21}{24}\)
Mà \(\frac{20}{24}< \frac{21}{24}\) nên \(\frac{5}{6}< \frac{7}{8}\)
Cộng phân số:
\(\frac{9}{4}+\frac{3}{5}\)
\(=\frac{45}{20}+\frac{12}{20}\)
\(=\frac{57}{20}\)
TL:
\(\dfrac{5}{6}< \dfrac{7}{8}\)
\(\dfrac{9}{4}+\dfrac{3}{5}\) = \(\dfrac{57}{20}\)
-HT-
Nguyen
Trả lời
5/6 và 7/8
5/6 < 7/8
9/4 + 3/5
9/4 + 3/5 = 57/20
-HT-
\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
x=???
\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}=0\)
<=> \(\left(\dfrac{x+4}{2000}+1\right)+\left(\dfrac{x+3}{2001}+1\right)=\left(\dfrac{x+2}{2002}+1\right)+\left(\dfrac{x+1}{2003}+1\right)=0\)
<=> \(\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}=\dfrac{x+2004}{2002}+\dfrac{x+2004}{2003}\)
<=> \(\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
<=> x + 2004 = 0
<=> x = -2004
(Bn nhớ thêm kết quả là 0 vào sau nữa nha)
Mik sửa:
\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
<=> \(\left(\dfrac{x+4}{2000}+1\right)+\left(\dfrac{x+3}{2001}+1\right)=\left(\dfrac{x+2}{2002}+1\right)+\left(\dfrac{x+1}{2003}+1\right)\)
<=> \(\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)
<=> \(\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
<=> x + 2004 = 0
<=> x = -2004
tìm x bt
\(\dfrac{x+4}{2000}\)+\(\dfrac{x+3}{2001}\)=\(\dfrac{x+2}{2002}\)+\(\dfrac{x+1}{2003}\)
\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
\(\left(\dfrac{x+4}{2000}+1\right)+\left(\dfrac{x+3}{2001}+1\right)=\left(\dfrac{x+2}{2002}+1\right)+\left(\dfrac{x+1}{2003}+1\right)\)
\(\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}=\dfrac{x+2004}{2002}+\dfrac{x+2004}{2003}\)
\(\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)
\(\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)\)
⇔\(x+2014=0\)
⇔\(x=-2014\)
\(\Rightarrow\left(\dfrac{x+4}{2000}+1\right)+\left(\dfrac{x+3}{2001}+1\right)=\left(\dfrac{x+2}{2002}+1\right)+\left(\dfrac{x+1}{2003}+1\right)\\ \Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\\ \Rightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\\ \Rightarrow x=-2004\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\ne0\right)\)
\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
\(\Leftrightarrow x+2004=0\)
hay x=-2004