Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Yu TaKa
Xem chi tiết
Quỳnhh-34- 6.5 Phạm như
16 tháng 4 2022 lúc 10:10

>

Vũ Ngọc Anh
16 tháng 4 2022 lúc 10:14

Ta có : \(\dfrac{2005}{2007}=1-\dfrac{2}{2007};\dfrac{2007}{2009}=1-\dfrac{2}{2009}\)

\(Do:\dfrac{2}{2007}>\dfrac{2}{2009}\Rightarrow1-\dfrac{2}{2007}< 1-\dfrac{2}{2009}\)

\(\Rightarrow\dfrac{2005}{2007}< \dfrac{2007}{2009}\)

Yu TaKa
Xem chi tiết
Vương Hương Giang
16 tháng 4 2022 lúc 12:54

Ta có : 

 

2005/2007=2007-2/2007=2007/2007 -2/2007=1 -2/2007

2007/2009 =2009-2007/2009=2009/2009 -2/2009=1-2009

vì 2007<2009 nên 2/2007>2/2009

⇒1-2/2007 <1-2/2009

⇒2005/2007 <2007/2009

chuche
16 tháng 4 2022 lúc 12:55

Tham khảo nhé !

Ta có : \(\dfrac{2005}{2007}=2007-\dfrac{2}{2007}=\dfrac{2007}{2007}-\dfrac{2}{2007}=1-\dfrac{2}{2007}\)

\(\dfrac{2007}{2009}=2009-\dfrac{2007}{2009}=\dfrac{2009}{2009}-\dfrac{2}{2009}=1-2009\)

Vì \(2007<2009\) nên \(\dfrac{2}{2007}>\dfrac{2}{2009}\)

\(1-\dfrac{2}{2007}< 1-\dfrac{2}{2009}\)

\(\dfrac{2005}{2007}< \dfrac{2007}{2009}\)

Phạm Thanh Hà
16 tháng 4 2022 lúc 13:21

2005/2007<2007/2009

Vũ Thị Hoa
Xem chi tiết
𝐓𝐡𝐮𝐮 𝐓𝐡𝐮𝐲𝐲
5 tháng 6 2018 lúc 7:44

Ta có :

\(1-\frac{2007}{2008}=\frac{1}{2008}\)

\(1-\frac{2008}{2009}=\frac{1}{2009}\)

Vì \(\frac{1}{2008}>\frac{1}{2009}\) nên \(\frac{2007}{2008}< \frac{2008}{2009}\)

Trần Tuấn Anh
5 tháng 6 2018 lúc 7:38

phần bù đến 1 của 2007/2008 là 1-2007/2008=1/2008

phần bù đến 1 của 2008/2009 là 1-2008/2009=1/2009

Vì 1/2008>1/2009 nên 2007/2008<2008/2009

Never_NNL
5 tháng 6 2018 lúc 7:46

\(\frac{2007}{2008}=\frac{2007\left(2008+1\right)}{2008\left(2008+1\right)}=\frac{2007x2008+2007x1}{2008^2+2008x1}\)

\(\frac{2007+1}{2008+1}=\frac{2008\left(2007+1\right)}{2008\left(2008+1\right)}=\frac{2008x2007+2008x1}{2008^2+2008x1}\)

Vi 2007x1 < 2008x1 nen 2007x2008 + 2007x 1 / 2008^2 + 2008 x 1 < 2008 x 2007 + 2008 x 1 / 2008^2 + 2008 x 1 hay 2007<2007+1/2008+1 = 2008/2009

Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Nam Vũ Tú
Xem chi tiết
Nguyễn Thanh Hằng
4 tháng 5 2017 lúc 5:45

Áp dụng tính chất : \(\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\) (\(a;b,m\in N\)*)

Ta có :

\(A=\dfrac{100^{2007}+1}{100^{2008}+1}< \dfrac{100^{2007}+1+99}{100^{2008}+1+99}=\dfrac{100^{2007}+100}{100^{2008}+100}=\dfrac{100\left(100^{2006}+1\right)}{100\left(100^{2007}+1\right)}=\dfrac{100^{2006}+1}{100^{2007}+1}=B\)

\(\Rightarrow A< B\)

Big City Boy
Xem chi tiết
Akai Haruma
1 tháng 3 2021 lúc 14:04

Lời giải:

Xét PT(1):

\(\Leftrightarrow \frac{x-2013}{2011}+1+\frac{x-2011}{2009}+1=\frac{x-2009}{2007}+1+\frac{x-2007}{2005}+1\)

\(\Leftrightarrow \frac{x-2}{2011}+\frac{x-2}{2009}=\frac{x-2}{2007}+\frac{x-2}{2005}\)

\(\Leftrightarrow (x-2)\left(\frac{1}{2011}+\frac{1}{2009}-\frac{1}{2007}-\frac{1}{2005}\right)=0\)

Dễ thấy $\frac{1}{2011}+\frac{1}{2009}-\frac{1}{2007}-\frac{1}{2005}\neq 0$ nên $x-2=0$

$\Rightarrow x=2$Xét $(2)$:\(\Leftrightarrow \frac{(x-2)(x+m)}{x-1}=0\)

Để $(1);(2)$ là 2 PT tương đương thì $(2)$ chỉ có nghiệm $x=2$

Điều này xảy ra khi $x+m=x-1$ hoặc $x+m=x-2\Leftrightarrow m=-1$ hoặc $m=-2$

Big City Boy
Xem chi tiết
Yeutoanhoc
28 tháng 2 2021 lúc 23:02

`(x-2013)/2011+(x-2011)/2009=(x-2009)/2007+(x-2007)/2005`

`<=>(x-2013)/2011+1+(x-2011)/2009+1=(x-2009)/2007+1+(x-2007)/2005+1`

`<=>(x-2)/2011+(x-2)/2009=(x-2)/2007+(x-2)/2005`

`<=>(x-2)(1/2011+1/2009-1/2007-1/2005)=0`

`<=>x-2=0`

`<=>x=2`

PT tương đương khi cả 2 PT có cùng nghiệm

`=>(x^2-(2-m).x-2m)/(x-1)` tương đương nếu nhận `x=2` là nghiệm

Thay `x=2`

`<=>(4-(2-m).2-2m)/(2-1)=0`

`<=>4-4+2m-2m=0`

`<=>0=0` luôn đúng.

Vậy phương trình `(x-2013)/2011+(x-2011)/2009=(x-2009)/2007+(x-2007)/2005` và `(x^2-(2-m).x-2m)/(x-1)` luôn tương đương với nha `forall m`

Eren
28 tháng 2 2021 lúc 23:25

\(\left(1\right)\Leftrightarrow\dfrac{x-2013}{2011}+1+\dfrac{x-2011}{2009}+1=\dfrac{x-2009}{2007}+1+\dfrac{x-2007}{2005}+1\)

\(\Leftrightarrow\dfrac{x-2}{2011}+\dfrac{x-2}{2009}-\dfrac{x-2}{2007}-\dfrac{x-2}{2005}=0\)

\(\Leftrightarrow x-2=0\)

\(\Leftrightarrow x=2\)

(1) và (2) tương đương khi và chỉ khi (1) và (2) có cùng tập nghiệm khi và chỉ khi (2) có nghiệm duy nhất x = 2

<=> x2 - (2 - m)x - 2m = 0 có nghệm kép x = 2 (3) hoặc x2 - (2 - m)x - 2m = 0 có 2 nghiệm x = 1 và x = 2

Giải (3) ta có: \(\left\{{}\begin{matrix}\Delta=\left[-\left(2-m\right)\right]^2+8m=0\\2^2-2\left(2-m\right)-2m=0\end{matrix}\right.\)

<=> m2 + 4m + 4 = 0

<=> (m + 2)2 = 0

<=> m = -2

Giải (4) ta có:

\(\left\{{}\begin{matrix}2^2-2\left(2-m\right)-2m=0\\1^2-\left(2-m\right)-2m=0\end{matrix}\right.\)

<=> -m - 1 = 0

<=> m = -1

Vậy có 2 giá trị của m thoả mãn là -2 và -1

 

Eren
1 tháng 3 2021 lúc 12:06

(1) <=> \(\dfrac{x-2013}{2011}+1+\dfrac{x-2011}{2009}+1=\dfrac{x-2009}{2007}+1+\dfrac{x-2007}{2005}+1\)

<=> \(\dfrac{x-2}{2011}+\dfrac{x-2}{2009}-\dfrac{x-2}{2007}-\dfrac{x-2}{2005}=0\)

⇔x−2=0

⇔x=2

(1) và (2) tương đương khi và chỉ khi (1) và (2) có cùng tập nghiệm khi và chỉ khi (2) có nghiệm duy nhất x = 2

<=> x2 - (2 - m)x - 2m = 0 chỉ có nghệm x = 2 (3) hoặc x2 - (2 - m)x - 2m = 0 có 2 nghiệm x = 1 và x = 2

Giải (3) ta có:

x2 - (2 - m)x - 2m = 0

<=> x2 - 2x + mx - 2m = 0

<=> (x - 2)(x + m) = 0

<=> \(\left[{}\begin{matrix}x-2=0\\x+m=0\end{matrix}\right.\)

Để x- (2 - m)x - 2m = 0 chỉ có nghiệm x = 2 thì x + m = 0 có nghiệm x = 2 <=> m = -2

Giải (4) ta có:

\(\left\{{}\begin{matrix}2^2-2\left(2-m\right)-2m=0\\1^2-\left(2-m\right)-2m=0\end{matrix}\right.\)

<=> -m - 1 = 0

<=> m = -1

Vậy có 2 giá trị của m thoả mãn là -2 và -1

Nguyễn Vũ Hoàng
Xem chi tiết
Huỳnh Ngọc Lộc
19 tháng 11 2017 lúc 10:20

Ta có :

\(A=\dfrac{\dfrac{2008}{1}+\dfrac{2007}{2}+....................+\dfrac{2}{2007}+\dfrac{1}{2008}}{\dfrac{1}{2}+\dfrac{1}{3}+....................+\dfrac{1}{2008}+\dfrac{1}{2009}}\)

\(\Rightarrow A=\dfrac{\left(\dfrac{2007}{2}+1\right)+.....+\left(\dfrac{2}{2007}+1\right)+\left(\dfrac{1}{2008}+1\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+...............+\dfrac{1}{2008}+\dfrac{1}{2009}}\)

\(\Rightarrow A=\dfrac{\dfrac{2009}{2}+...................+\dfrac{2009}{2007}+\dfrac{2009}{2008}+\dfrac{2009}{2009}}{\dfrac{1}{2}+\dfrac{1}{3}+.....................+\dfrac{1}{2008}+\dfrac{1}{2009}}\)

\(\Rightarrow A=\dfrac{2009\left(\dfrac{1}{2}+..........................+\dfrac{1}{2008}+\dfrac{1}{2009}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+............................+\dfrac{1}{2008}+\dfrac{1}{2009}}\)

\(\Rightarrow A=2009\)