Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Big City Boy

Cho hai phương trình: \(\dfrac{x-2013}{2011}+\dfrac{x-2011}{2009}=\dfrac{x-2009}{2007}+\dfrac{x-2007}{2005}\left(1\right)\) và \(\dfrac{x^2-\left(2-m\right)x-2m}{x-1}=0\left(2\right)\) ( Với m là tham số). Với giá trị nào của m thì 2 phương trình đã cho tương đương

Yeutoanhoc
28 tháng 2 2021 lúc 23:02

`(x-2013)/2011+(x-2011)/2009=(x-2009)/2007+(x-2007)/2005`

`<=>(x-2013)/2011+1+(x-2011)/2009+1=(x-2009)/2007+1+(x-2007)/2005+1`

`<=>(x-2)/2011+(x-2)/2009=(x-2)/2007+(x-2)/2005`

`<=>(x-2)(1/2011+1/2009-1/2007-1/2005)=0`

`<=>x-2=0`

`<=>x=2`

PT tương đương khi cả 2 PT có cùng nghiệm

`=>(x^2-(2-m).x-2m)/(x-1)` tương đương nếu nhận `x=2` là nghiệm

Thay `x=2`

`<=>(4-(2-m).2-2m)/(2-1)=0`

`<=>4-4+2m-2m=0`

`<=>0=0` luôn đúng.

Vậy phương trình `(x-2013)/2011+(x-2011)/2009=(x-2009)/2007+(x-2007)/2005` và `(x^2-(2-m).x-2m)/(x-1)` luôn tương đương với nha `forall m`

Eren
28 tháng 2 2021 lúc 23:25

\(\left(1\right)\Leftrightarrow\dfrac{x-2013}{2011}+1+\dfrac{x-2011}{2009}+1=\dfrac{x-2009}{2007}+1+\dfrac{x-2007}{2005}+1\)

\(\Leftrightarrow\dfrac{x-2}{2011}+\dfrac{x-2}{2009}-\dfrac{x-2}{2007}-\dfrac{x-2}{2005}=0\)

\(\Leftrightarrow x-2=0\)

\(\Leftrightarrow x=2\)

(1) và (2) tương đương khi và chỉ khi (1) và (2) có cùng tập nghiệm khi và chỉ khi (2) có nghiệm duy nhất x = 2

<=> x2 - (2 - m)x - 2m = 0 có nghệm kép x = 2 (3) hoặc x2 - (2 - m)x - 2m = 0 có 2 nghiệm x = 1 và x = 2

Giải (3) ta có: \(\left\{{}\begin{matrix}\Delta=\left[-\left(2-m\right)\right]^2+8m=0\\2^2-2\left(2-m\right)-2m=0\end{matrix}\right.\)

<=> m2 + 4m + 4 = 0

<=> (m + 2)2 = 0

<=> m = -2

Giải (4) ta có:

\(\left\{{}\begin{matrix}2^2-2\left(2-m\right)-2m=0\\1^2-\left(2-m\right)-2m=0\end{matrix}\right.\)

<=> -m - 1 = 0

<=> m = -1

Vậy có 2 giá trị của m thoả mãn là -2 và -1

 

Eren
1 tháng 3 2021 lúc 12:06

(1) <=> \(\dfrac{x-2013}{2011}+1+\dfrac{x-2011}{2009}+1=\dfrac{x-2009}{2007}+1+\dfrac{x-2007}{2005}+1\)

<=> \(\dfrac{x-2}{2011}+\dfrac{x-2}{2009}-\dfrac{x-2}{2007}-\dfrac{x-2}{2005}=0\)

⇔x−2=0

⇔x=2

(1) và (2) tương đương khi và chỉ khi (1) và (2) có cùng tập nghiệm khi và chỉ khi (2) có nghiệm duy nhất x = 2

<=> x2 - (2 - m)x - 2m = 0 chỉ có nghệm x = 2 (3) hoặc x2 - (2 - m)x - 2m = 0 có 2 nghiệm x = 1 và x = 2

Giải (3) ta có:

x2 - (2 - m)x - 2m = 0

<=> x2 - 2x + mx - 2m = 0

<=> (x - 2)(x + m) = 0

<=> \(\left[{}\begin{matrix}x-2=0\\x+m=0\end{matrix}\right.\)

Để x- (2 - m)x - 2m = 0 chỉ có nghiệm x = 2 thì x + m = 0 có nghiệm x = 2 <=> m = -2

Giải (4) ta có:

\(\left\{{}\begin{matrix}2^2-2\left(2-m\right)-2m=0\\1^2-\left(2-m\right)-2m=0\end{matrix}\right.\)

<=> -m - 1 = 0

<=> m = -1

Vậy có 2 giá trị của m thoả mãn là -2 và -1


Các câu hỏi tương tự
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Thỏ Nghịch Ngợm
Xem chi tiết
Ctuu
Xem chi tiết
Nghịch Dư Thủy
Xem chi tiết
Thỏ Nghịch Ngợm
Xem chi tiết
Măm Măm
Xem chi tiết
Nguyễn Phương Anh
Xem chi tiết