Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Diệu Châu
Xem chi tiết
Lê Hữu Huy Hoàng
11 tháng 12 2021 lúc 20:27

\(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{2-3\sqrt{x}}{x-4}\) = \(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)+2-3\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\) = \(\dfrac{x+\sqrt{x}-2+2-3\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\) = \(\dfrac{x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\) = \(\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\) = \(\dfrac{\sqrt{x}}{\sqrt{x}+2}\)

Nguyễn Nhật Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 7 2023 lúc 21:39

a: ĐKXĐ: x>0; x<>1

\(Q=\dfrac{x+\sqrt{x}+\sqrt{x}}{x-1}:\dfrac{2\left(\sqrt{x}+1\right)-2+x}{x\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{x-1}\cdot\dfrac{x\left(\sqrt{x}+1\right)}{2\sqrt{x}+x}\)

\(=\dfrac{x}{\sqrt{x}-1}\)

b: Q>2

=>Q-2>0

=>\(\dfrac{x-\sqrt{x}+1}{\sqrt{x}-1}>0\)

=>căn x-1>0

=>x>1

Võ Việt Hoàng
29 tháng 7 2023 lúc 21:54

a) ĐK: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

\(Q=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{2}{x}-\dfrac{2-x}{x\sqrt{x}+x}\right)\)

\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{2\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}-\dfrac{2-x}{x\left(\sqrt{x}+1\right)}\right)\)

\(=\dfrac{x+\sqrt{x}+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{2\sqrt{x}+2-2+x}{x\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{x\left(\sqrt{x}+1\right)}{x+2\sqrt{x}}\)

\(=\dfrac{x}{\sqrt{x}-1}\)

b) Q>2 <=> \(\dfrac{x}{\sqrt{x}-1}>2\Leftrightarrow x>2\sqrt{x}-2\)

\(\Leftrightarrow x-2\sqrt{x}+2>0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+1>0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2\ge0\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-1\le0\\\sqrt{x}-1\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge1\\x\le1\end{matrix}\right.\)

KL:.....

Nguyễn Huyền Chi
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 6 2022 lúc 20:56

a: \(P=1:\left(\dfrac{1}{\sqrt{x}+2}-\dfrac{3x}{2\left(x-4\right)}+\dfrac{2}{2\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{1}{4-2\sqrt{x}}\)

\(=1:\left(\dfrac{2\left(\sqrt{x}-2\right)-3x+2\sqrt{x}+4}{2\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{1}{2\left(2-\sqrt{x}\right)}\)

\(=1:\dfrac{2\sqrt{x}-4-3x+2\sqrt{x}+4}{2\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{2\left(2-\sqrt{x}\right)}\)

\(=\dfrac{2\left(x-4\right)}{-3x+4\sqrt{x}}\cdot\dfrac{1}{2\left(2-\sqrt{x}\right)}\)

\(=\dfrac{\sqrt{x}+2}{3x-4\sqrt{x}}\)

b: Để P=20 thì \(\sqrt{x}+2=60x-80\sqrt{x}\)

\(\Leftrightarrow60x-81\sqrt{x}-2=0\)

Đặt \(\sqrt{x}=a\)

Pt sẽ là \(60a^2-81a-2=0\)

\(\text{Δ}=\left(-81\right)^2-4\cdot60\cdot\left(-2\right)=7041>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}a_1=\dfrac{81-\sqrt{7041}}{120}\left(loại\right)\\a_2=\dfrac{81+\sqrt{7041}}{120}\left(nhận\right)\end{matrix}\right.\)

\(\Leftrightarrow x=\left(\dfrac{81+\sqrt{7041}}{120}\right)^2\)

mai vy trần thị
Xem chi tiết
Dung Vu
Xem chi tiết
ILoveMath
10 tháng 11 2021 lúc 14:34

a.\(A=\dfrac{x^2-4x+4}{x^3-2x^2-\left(4x-8\right)}=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{\left(x^2-4\right)\left(x-2\right)}=\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x+2}\)

 

Nguyễn Hoàng Minh
10 tháng 11 2021 lúc 14:35

\(A=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}\left(x\ne\pm2\right)\\ A=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\\ B=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\left(x>0\right)\\ B=\dfrac{4\sqrt{x}\left(\sqrt{x}+1\right)}{3\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)

Dung Vu
Xem chi tiết
Nguyễn Hoàng Minh
18 tháng 11 2021 lúc 14:25

\(A=\dfrac{x^2-x^2-2x+2x-4}{\left(x-2\right)\left(x+2\right)}\left(x\ne\pm2\right)=\dfrac{-4}{x^2-4}\\ B=\dfrac{\left|x-1\right|+x^2+4x+4}{\left(x-2\right)\left(x+2\right)}\left(x\ne\pm2\right)\)

Với \(x>1;x\ne2\Leftrightarrow B=\dfrac{x^2+5x+3}{\left(x-2\right)\left(x+2\right)}\)

Với \(x< 1;x\ne-2\Leftrightarrow B=\dfrac{x^2+3x+5}{\left(x-2\right)\left(x+2\right)}\)

Trần Vũ Phương Thảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 10 2021 lúc 23:39

\(\dfrac{x+4}{x^2-4}-\dfrac{2}{x^2+2x}\)

\(=\dfrac{x^2+4x-2x+4}{\left(x-2\right)\left(x+2\right)x}\)

\(=\dfrac{x^2+2x+4}{x\left(x-2\right)\left(x+2\right)}\)

 

Trần Tuấn Huy
Xem chi tiết
Nguyễn Huy Tú
11 tháng 2 2022 lúc 20:44

đk : x >= 0 ; x khác 4 

\(A=\dfrac{2\sqrt{x}-4-\sqrt{x}-2+4}{x-4}=\dfrac{\sqrt{x}-2}{x-4}=\dfrac{1}{\sqrt{x}+2}\)

Minh Hiếu
11 tháng 2 2022 lúc 20:44

\(A=\dfrac{2}{\sqrt{x}+2}-\dfrac{1}{\sqrt{x}-2}+\dfrac{4}{x-4}\left(đk:x>2\right)\)

\(=\dfrac{2\left(\sqrt{x}-2\right)-\left(\sqrt{x}+2\right)+4}{x-4}\)

\(=\dfrac{2\sqrt{x}-4-\sqrt{x}-2+4}{x-4}=\dfrac{\sqrt{x}-2}{x-4}=\dfrac{1}{\sqrt{x}+2}\)

Trúc Giang
11 tháng 2 2022 lúc 20:45

ĐKXĐ: x khác 4; x ≥ 0

\(A=\dfrac{2\sqrt{x}-4-\sqrt{x}-2+4}{x-4}=\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{1}{\sqrt{x}+2}\)

Khánh Linh Đỗ
Xem chi tiết
HT.Phong (9A5)
30 tháng 10 2023 lúc 16:54

a) ĐKXĐ: 

\(\left\{{}\begin{matrix}x^2-9\ne0\\x+3\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm3\\x\ne-3\end{matrix}\right.\Leftrightarrow x\ne\pm3\) 

b) \(A=\dfrac{x+15}{x^2-9}-\dfrac{2}{x+3}\)

\(A=\dfrac{x+15}{\left(x+3\right)\left(x-3\right)}-\dfrac{2\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)

\(A=\dfrac{x+15-2x+6}{\left(x+3\right)\left(x-3\right)}\)

\(A=\dfrac{21-x}{\left(x+3\right)\left(x-3\right)}\)

c) Thay x = - 1 vào A ta có: 

\(A=\dfrac{21-\left(-1\right)}{\left(-1+3\right)\left(-1-3\right)}=\dfrac{21+1}{2\cdot-4}=\dfrac{22}{-8}=-\dfrac{11}{4}\)