Rút gọn tổng \(S=\dfrac{1}{x^2}+\dfrac{2}{x^3}+\dfrac{3}{x^4}+...+\dfrac{100}{x^{101}}\)
Rút gọn biểu thức \(S\left(x\right)=\dfrac{1}{x^2}+\dfrac{2}{x^3}+\dfrac{3}{x^4}+...+\dfrac{n}{x^{n+1}}\) bằng:
A. \(S=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^{n+1}\left(x-1\right)^2}\)
B. \(S=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^{2n}\left(x-1\right)^2}\)
C. \(S=\dfrac{x^n-\left(n+1\right)x+n}{x^n\left(x-1\right)^2}\)
D. \(S=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^n\left(x-1\right)^2}\)
Rút gọn biểu thức \(S\left(x\right)=\dfrac{1}{x^2}+\dfrac{2}{x^3}+\dfrac{3}{x^4}+...+\dfrac{n}{x^{n+1}}\) bằng:
A. \(S=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^{n+1}\left(x-1\right)^2}\)
B. \(S=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^{2n}\left(x-1\right)^2}\)
C. \(S=\dfrac{x^n-\left(n+1\right)x+n}{x^n\left(x-1\right)^2}\)
D. \(S=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^n\left(x-1\right)^2}\)
\(S\left(x\right)=\dfrac{1}{x^2}+\dfrac{2}{x^3}+...+\dfrac{n}{x^{n+1}}\)
\(\Rightarrow x.S\left(x\right)=\dfrac{1}{x}+\dfrac{2}{x^2}+\dfrac{3}{x^3}+...+\dfrac{n}{x^n}\)
\(\Rightarrow x.S\left(x\right)-S\left(x\right)=\dfrac{1}{x}+\dfrac{1}{x^2}+\dfrac{1}{x^3}+...+\dfrac{1}{x^n}-\dfrac{n}{x^{n+1}}\)
\(\Rightarrow\left(x-1\right)S\left(x\right)=\dfrac{1}{x}.\dfrac{1-\left(\dfrac{1}{x}\right)^n}{1-\dfrac{1}{x}}-\dfrac{n}{x^{n+1}}=\dfrac{x^n-1}{x^n\left(x-1\right)}-\dfrac{n}{x^{n+1}}=\dfrac{x^{n+1}-x-n\left(x-1\right)}{x^{n+1}\left(x-1\right)}\)
\(\Rightarrow S\left(x\right)=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^{n+1}\left(x-1\right)^2}\)
1 a..Rút gọn biểu thức A = \(\dfrac{\text{ x 2 − 4 x + 4}}{\text{x 3 − 2 x 2 − ( 4 x − 8 ) }}\)
b. Rút gọn biểu thức B = \(\left(\dfrac{x+2}{\text{x }\sqrt{\text{x }}+1}-\dfrac{1}{\sqrt{\text{x}}+1}\right).\dfrac{\text{4 }\sqrt{x}}{3}\)
a.\(A=\dfrac{x^2-4x+4}{x^3-2x^2-\left(4x-8\right)}=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{\left(x^2-4\right)\left(x-2\right)}=\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x+2}\)
\(A=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}\left(x\ne\pm2\right)\\ A=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\\ B=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\left(x>0\right)\\ B=\dfrac{4\sqrt{x}\left(\sqrt{x}+1\right)}{3\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
Rút gọn biểu thức:
A = \([(32)^{\dfrac{2}{3}}]^{\dfrac{-2}{5}}\)
B= \(\dfrac{x^{-2}+y^{-2}}{x^{-1}+y^{-1}}\)
C = \((a^{\dfrac{1}{3}}-b^{\dfrac{2}{3}})(a^{\dfrac{2}{3}}+a^{\dfrac{1}{3}}×b^{\dfrac{4}{3}}+b^{\dfrac{4}{9}})\)
D = \((x+y^\dfrac{3}{2}÷\sqrt{x})^\dfrac{2}{3}÷[\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}}+\dfrac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}]^\dfrac{2}{3}\)
E = \([\dfrac{1}{x^{\dfrac{1}{2}}-4x^{\dfrac{-1}{2}}}-\dfrac{2\sqrt[3]{x}}{x\sqrt[3]{x}-4\sqrt[3]{x}}]^{-2}-\sqrt{x^2+8x+16}\)
Rút gọn biểu thức:
P = \(\dfrac{2a^2+4}{1-a^3}-\dfrac{1}{1+\sqrt{a}}-\dfrac{1}{1-\sqrt{a}}\)
A = \(\dfrac{x}{x-1}+\dfrac{3}{x+1}-\dfrac{6x-4}{x^2-1}\)
ĐKXĐ: a > 0 và a khác 1
\(P=\dfrac{2\left(a^2+2\right)}{\left(1-a\right)\left(1+a+a^2\right)}-\dfrac{\left(1-\sqrt{a}\right)\left(1+a+a^2\right)}{\left(1-a\right)\left(1+a+a^2\right)}-\dfrac{\left(1+\sqrt{a}\right)\left(1+a+a^2\right)}{\left(1-a\right)\left(1+a+a^2\right)}\)\(=\dfrac{2a^2+4-\left(1+a+a^2\right).\left(1-\sqrt{a}+1+\sqrt{a}\right)}{1-a^3}\)
\(=\dfrac{2a^2+4-\left(1+a+a^2\right)}{1-a^3}\)
\(=\dfrac{a^2+a+3}{\left(1-a^3\right)}\)
Bài 2: A = \(\dfrac{x^2+2}{x^3-1}+\dfrac{x+1}{x^2+x+1}\) và B = \(\dfrac{1}{x-1}\)
a) Tính giá trị của B khi \(x^2-8x+7=0\)
b) Chứng tỏ A = \(\dfrac{2x^2+1}{x^3-1}\)
c) Rút gọn S = A - B
d) Tìm x để S = \(\dfrac{1}{3}\)
e) So sánh S với $\frac{1}{3}$
a) ĐKXĐ: \(x\ne1\)
Ta có: \(x^2-8x+7=0\)
\(\Leftrightarrow x^2-x-7x+7=0\)
\(\Leftrightarrow x\left(x-1\right)-7\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(loại\right)\\x=7\left(nhận\right)\end{matrix}\right.\)
Thay x=7 vào B, ta được:
\(B=\dfrac{1}{7-1}=\dfrac{1}{6}\)
Vậy: Khi \(x^2-8x+7=0\) thì \(B=\dfrac{1}{6}\)
b) Ta có: \(A=\dfrac{x^2+2}{x^3-1}+\dfrac{x+1}{x^2+x+1}\)
\(=\dfrac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}\)
\(=\dfrac{x^2+2+x^2-1}{x^3-1}\)
\(=\dfrac{2x^2+1}{x^3-1}\)
c) Ta có: S=A-B
\(=\dfrac{2x^2+1}{x^3-1}-\dfrac{1}{x-1}\)
\(=\dfrac{2x^2+1}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{2x^2+1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x}{x^2+x+1}\)
1) Cho biểu thức : A=\(\dfrac{4x^2}{x^2-4}\)+\(\dfrac{1}{x+2}\)-\(\dfrac{1}{x-2}\) (Với x≠2 và x≠ -2)
a.Rút gọn biểu thức A.
b. Tính giá trị của biểu thức A khi x=4.
2) Rút gọn biểu thức A=\(\dfrac{x}{x-1}\)+\(\dfrac{3}{x+1}\)+\(\dfrac{3-5x}{x^2-1}\) , với x≠ -1 và x≠1
3) Rút gọn biểu thức P=\(\dfrac{2}{x-2}\)+\(\dfrac{1}{x+2}\)\(\dfrac{6+5x}{4-x^2}\), với x≠ -2 và x≠ 2
4) Cho biểu thỨC : A= \(\dfrac{2x}{x^2-25}\)+\(\dfrac{5}{5-x}\)-\(\dfrac{1}{x+5}\)( với x≠5 và x≠ -5)
a. Rút gọn biểu thức A
b. Tính giá trị của biểu thức A khi x=\(\dfrac{4}{5}\).
5) Cho biểu thức : M =\(\dfrac{x^2}{x^2+2x}\)+\(\dfrac{2}{x+2}\)+\(\dfrac{2}{x}\) ( với x ≠0 và x≠ -2)
a. Rút gọn biểu thức M
b. Tính giá trị của biểu thức M khi: x=\(-\dfrac{3}{2}\)
MN BIẾT LÀM CÂU NÀO THÌ LÀM CÂU ĐÓ CŨNG ĐƯỢC AH!
1,
\(A=\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{4x^2+x-2-\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{4x^2-4}{\left(x-2\right)\left(x+2\right)}\)
\(x=4\Rightarrow A=\dfrac{4.x^2-4}{\left(4-2\right)\left(4+2\right)}=...\)
2.
\(A=\dfrac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{3-5x}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x\left(x+1\right)+3\left(x-1\right)+3-5x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)
3.
Đề lỗi, thiếu dấu trước \(\dfrac{6+5x}{4-x^2}\)
4.
\(A=\dfrac{2x}{\left(x-5\right)\left(x+5\right)}-\dfrac{5\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\dfrac{x-5}{\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{2x-5\left(x+5\right)-\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{-4x-20}{\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{-4\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{-4}{x-5}\)
\(x=\dfrac{4}{5}\Rightarrow A=\dfrac{-4}{\dfrac{4}{5}-5}=\dfrac{20}{21}\)
5.
\(M=\dfrac{x^2}{x\left(x+2\right)}+\dfrac{2x}{x\left(x+2\right)}+\dfrac{2\left(x+2\right)}{x\left(x+2\right)}\)
\(=\dfrac{x^2+2x+2\left(x+2\right)}{x\left(x+2\right)}=\dfrac{x^2+4x+4}{x\left(x+2\right)}\)
\(=\dfrac{\left(x+2\right)^2}{x\left(x+2\right)}=\dfrac{x+2}{x}\)
\(x=-\dfrac{3}{2}\Rightarrow M=\dfrac{-\dfrac{3}{2}+2}{-\dfrac{3}{2}}=-\dfrac{1}{3}\)
Câu 1: Rút gọn biểu thức: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{2}}+\dfrac{6}{x+3\sqrt{x}}\right)\) với x > 0
Câu 2: Rút gọn biểu thức:
\(P=\dfrac{x\sqrt{2}}{2\sqrt{x}+x\sqrt{2}}+\dfrac{\sqrt{2x}-2}{x-2}\) với x > 0; x \(\ne\) 2
Câu 3: Rút gọn biểu thức:
\(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\) với a > 0; a \(\ne\) 4
Câu 1:
Sửa đề: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)
Ta có: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)
\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{1}{\sqrt{x}+3}\right):\left(\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=1\)
Câu 3:
Ta có: \(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)
\(=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-2\right)^2}\)
\(=\dfrac{a+\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-2}{1}\)
\(=\sqrt{a}\left(\sqrt{a}-2\right)\)
\(=a-2\sqrt{a}\)
Rút gọn
\(C=\dfrac{2}{x+3}+\dfrac{1}{x-3}-\dfrac{8}{x^2-9}\)
tính C khi x = 4
ĐK: \(x\ne\pm3\)
Khi đó:
\(C=\dfrac{2\left(x-3\right)}{x^2-9}+\dfrac{1\left(x+3\right)}{x^2-9}-\dfrac{8}{x^2-9}\\ =\dfrac{2x-6}{x^2-9}+\dfrac{x+3}{x^2-9}-\dfrac{8}{x^2-9}\\ =\dfrac{2x-6+x+3-8}{x^2-9}\\ =\dfrac{3x-11}{x^2-9}\)
Thế x = 4 vào C được:
\(C=\dfrac{3.4-11}{4^2-9}=\dfrac{12-11}{16-9}=\dfrac{1}{7}\)