Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anh Quynh
Xem chi tiết
Nguyễn Thị Yến
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 10 2021 lúc 21:04

b: Ta có: \(\left(\sqrt{7-3\sqrt{5}}\right)\cdot\left(7+3\sqrt{5}\right)\cdot\left(3\sqrt{2}+\sqrt{10}\right)\)

\(=\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\left(7+3\sqrt{5}\right)\)

\(=4\left(7+3\sqrt{5}\right)\)

\(=28+12\sqrt{5}\)

Akai Haruma
5 tháng 10 2021 lúc 21:21

Lời giải:

a. 

$A=\sqrt{8+\sqrt{55}}-\sqrt{8-\sqrt{55}}-\sqrt{125}$
$\sqrt{2}A=\sqrt{16+2\sqrt{55}}-\sqrt{16-2\sqrt{55}}-\sqrt{250}$

$=\sqrt{(\sqrt{11}+\sqrt{5})^2}-\sqrt{(\sqrt{11}-\sqrt{5})^2}-5\sqrt{10}$

$=|\sqrt{11}+\sqrt{5}|-|\sqrt{11}-\sqrt{5}|-5\sqrt{10}$

$=2\sqrt{5}-5\sqrt{10}$

$\Rightarrow A=\sqrt{10}-5\sqrt{5}$

b.

$B=\sqrt{7-3\sqrt{5}}.(7+3\sqrt{5})(3\sqrt{2}+\sqrt{10})$

$B\sqrt{2}=\sqrt{14-6\sqrt{5}}(7+3\sqrt{5})(3\sqrt{2}+\sqrt{10})$

$=\sqrt{(3-\sqrt{5})^2}(7+3\sqrt{5}).\sqrt{2}(3+\sqrt{5})$

$=(3-\sqrt{5})(7\sqrt{2}+3\sqrt{10})(3+\sqrt{5})$

$=(3^2-5)(7\sqrt{2}+3\sqrt{10})$

$=4(7\sqrt{2}+3\sqrt{10})=28\sqrt{2}+12\sqrt{10}$

$\Rightarrow B=28+12\sqrt{5}$

c.

$C=\sqrt{2}(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{6+\sqrt{35}}$

$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{12+2\sqrt{35}}$

$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{(\sqrt{7}+\sqrt{5})^2}

$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})(\sqrt{7}+\sqrt{5})$

$=(7-5)(6-\sqrt{35})$

$=2(6-\sqrt{35})=12-2\sqrt{35}$

phạm thị hồng anh
Xem chi tiết
Trần Việt Linh
4 tháng 8 2016 lúc 14:13

a)\(\left(\sqrt{21}+7\right)\cdot\sqrt{10-2\sqrt{21}}\)

\(=\left(\sqrt{21}+7\right)\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)

\(=\sqrt{7}\left(\sqrt{3}+\sqrt{7}\right)\left(\sqrt{7}-\sqrt{3}\right)\)

\(=\sqrt{7}\left(7-3\right)=4\sqrt{7}\)

b)\(\left(7+\sqrt{14}\right)\sqrt{9-2\sqrt{14}}\)

\(=\left(7+\sqrt{14}\right)\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}\)

\(=\sqrt{7}\left(\sqrt{7}+\sqrt{2}\right)\left(\sqrt{7}-\sqrt{2}\right)\)

\(=\sqrt{7}\left(7-2\right)=5\sqrt{7}\)

 

manh
Xem chi tiết
⭐Hannie⭐
30 tháng 9 2023 lúc 18:47

\(\sqrt{\left(2\sqrt{2-1}\right)^2}-\sqrt{17+12\sqrt{2}}\\ =\left|2\sqrt{2}-1\right|-\sqrt{9+2\cdot3\cdot2\sqrt{2}+\left(2\sqrt{2}\right)^2}\\ =2\sqrt{2}-1-\sqrt{\left(3+2\sqrt{2}\right)^2}\\=2\sqrt{2}-1-\left(3+2\sqrt{2}\right)\\ =2\sqrt{2}-1-3-2\sqrt{2}\\ =-4\)

__

\(\sqrt{\left(2-\sqrt{5}\right)^2}+\sqrt{14-6\sqrt{5}}\\ =\left|2-\sqrt{5}\right|+\sqrt{9-2\cdot3\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}\\ =2-\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}\\ =2-\sqrt{5}+3-\sqrt{5}\\ =5-2\sqrt{5}\)

__

\(\sqrt{\left(4-3\sqrt{2}\right)^2}-\sqrt{19+6\sqrt{2}}\\ =\left|4-3\sqrt{2}\right|-\sqrt{18+2\cdot3\cdot\sqrt{2}+1}\\ =4-3\sqrt{2}-\sqrt{\left(3\sqrt{2}+1\right)^2}\\ =4-3\sqrt{2}-3\sqrt{2}-1\\ =3-6\sqrt{2}\)

Ly Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 9 2021 lúc 22:14

a: Ta có: \(A=\left(\dfrac{6+\sqrt{20}}{3+\sqrt{5}}+\dfrac{\sqrt{14}-\sqrt{2}}{\sqrt{7}-1}\right):\left(2+\sqrt{2}\right)\)

\(=\left(2+\sqrt{2}\right):\left(2+\sqrt{2}\right)\)

=1

b: Ta có: \(B=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}-\dfrac{11}{2\sqrt{3}+1}\)

\(=\sqrt{3}-\sqrt{2}+\sqrt{3}+\sqrt{2}-2\sqrt{3}+1\)

=1

Phương Anh Nguyễn Thị
Xem chi tiết
Nguyễn Võ Văn Hùng
10 tháng 7 2017 lúc 20:29

Ta có :

a)\(\left(2\sqrt{5}-\sqrt{7}\right)\left(2\sqrt{5}-\sqrt{7}\right)=\left(2\sqrt{5}\right)^2-\left(\sqrt{7}\right)^2=20-7=13\)

b)\(\left(5\sqrt{2}+2\sqrt{3}\right)\left(2\sqrt{3}-5\sqrt{2}\right)=\left(2\sqrt{3}\right)^2-\left(5\sqrt{2}\right)^2=12-50=-38\)

c)\(\sqrt{9+4\sqrt{5}}=\sqrt{2^2+2.2.\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(2+\sqrt{5}\right)^2}=\left|2+\sqrt{5}\right|=2+\sqrt{5}\)

pham nguyen thanh duy
Xem chi tiết
s2 Lắc Lư  s2
19 tháng 8 2016 lúc 19:57

dễ mà,,,có j khó đâu

Ngọc Vĩ
19 tháng 8 2016 lúc 21:58

\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{7+4\sqrt{3}}\)

\(=2-\sqrt{3}+\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(=2-\sqrt{3}+2+\sqrt{3}\)

\(=4\)

TR ᗩ NG ²ᵏ⁶
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
17 tháng 6 2021 lúc 17:28

Bài 1

a) Đặt VT = A

<=> \(2\sqrt{2}A=\left(8+2\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{8-2\sqrt{15}}\)

<=> \(2\sqrt{2}A=\left(\sqrt{5}+\sqrt{3}\right)^2.\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right).\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

<=> \(2A=\left(\sqrt{5}+\sqrt{3}\right)^2.\left(\sqrt{5}-\sqrt{3}\right)^2\)

<=> 2A = \(\left(5-3\right)^2=4\)

<=> A = 2

b) Đặt VT = B

<=> \(2\sqrt{2}B=\left(10+2\sqrt{21}\right).\left(\sqrt{14}-\sqrt{6}\right)\sqrt{10-2\sqrt{21}}\)

<=> \(2\sqrt{2}B=\left(\sqrt{7}+\sqrt{3}\right)^2.\sqrt{2}\left(\sqrt{7}-\sqrt{3}\right).\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)

<=> \(2B=\left(\sqrt{7}+\sqrt{3}\right)^2.\left(\sqrt{7}-\sqrt{3}\right)^2=\left(7-3\right)^2=16\)

<=> B = 8 

Bài 2

Đặt VT = A

<=> A2 = \(\dfrac{\sqrt{5}+2+\sqrt{5}-2+2\sqrt{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}}{2}\)

<=> A2 = \(\dfrac{2\sqrt{5}+2\sqrt{5-4}}{2}=\dfrac{2\sqrt{5}+2}{2}=\sqrt{5}+1\)

<=> \(A=\sqrt{\sqrt{5}+1}\)

Võ Thùy Trang
Xem chi tiết
Hoàng Anh Thắng
25 tháng 9 2021 lúc 19:26

a)A=\(2\sqrt{3}-8\sqrt{3}+7\sqrt{3}=\sqrt{3}\)

b)B\(=\sqrt{\left(3-\sqrt{5}\right)^2}+\sqrt{\left(2-\sqrt{5}\right)^2}=3-\sqrt{5}+\sqrt{5}-2=1\)

d)\(=\dfrac{\left(5+\sqrt{5}\right)\left(\sqrt{5}-2\right)}{1}+1-\sqrt{5}-\dfrac{11\left(2\sqrt{5}-3\right)}{11}=5\sqrt{5}+5-10-2\sqrt{5}+1-\sqrt{5}-2\sqrt{5}+3=-1\)