Tìm \(a,b\in Z\) biết \(\dfrac{a}{9}-\dfrac{3}{b}=\dfrac{1}{18}\)
Cho \(A=\dfrac{2\sqrt{x}+4}{\sqrt{x}-3}\) và \(B=\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x+9}{9-x}\) (\(x\ge0;x\ne9\))
a, Rút gọn B.
b, Biết \(C=\dfrac{B}{A}\). Tìm \(x\in Z\) để \(C< -\dfrac{1}{3}\).
a: \(B=\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{x+9}{x-9}\)
\(=\dfrac{x-3\sqrt{x}-x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-3}{\sqrt{x}-3}\)
Cho \(A=\dfrac{2\sqrt{x}+4}{\sqrt{x}-3}\); \(B=\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x+9}{9-x}\) \(\left(x\ge0;x\ne9\right)\). Biết \(C=\dfrac{B}{A}\). Tìm \(x\in Z\) để \(C< \dfrac{-1}{3}\).
\(C=\left(\dfrac{x-3\sqrt{x}-x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right)\cdot\dfrac{\sqrt{x}-3}{2\sqrt{x}+4}\)
\(=\dfrac{-3}{2\sqrt{x}+4}\)
Để \(C< -\dfrac{1}{3}\) thì \(\dfrac{-3}{2\sqrt{x}+4}+\dfrac{1}{3}< 0\)
\(\Leftrightarrow-9+2\sqrt{x}+4< 0\)
\(\Leftrightarrow\sqrt{x}< \dfrac{5}{2}\)
hay \(0\le x< \dfrac{25}{4}\)
1.tìm số xyz biết \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25},vàx-y+z=4\)
2. biết \(a^2+ab+\dfrac{b^2}{3}=25;c^2+\dfrac{b^2}{3}=9;a^2+ac+c^2=16\) và a≠ 0; c ≠ 0; a ≠ -0. c/m rằng \(\dfrac{2c}{a}=\dfrac{b+c}{a+c}\)
Ta có:\(\dfrac{x^2}{4}=\dfrac{x}{2};\dfrac{y^2}{9}=\dfrac{y}{3};\dfrac{z^2}{25}=\dfrac{z}{5}\)
Aps dụng tính chất dãy tỉ số bằn nhau:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)
=>\(\dfrac{x}{2}=1=>x=2\)
\(\dfrac{y}{3}=1=>y=3\)
\(\dfrac{z}{5}=1=>z=5\)
Vậy x=2, y=3, z=5
Ta có : \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)
\(\Leftrightarrow x=2;y=3;z=5\)
1, Tìm x ∈ Z biết
a, \(\dfrac{x-4}{15}\)=\(\dfrac{5}{3}\)
b, \(\dfrac{x}{4}\)=\(\dfrac{18}{x+1}\)
c,2x+3 ⋮ x+4
\sqrt{1} \(\dfrac{help}{me}\)
a) \(\dfrac{x-4}{15}=\dfrac{5}{3}\)
\(\Leftrightarrow x-4=15.\dfrac{5}{3}\)
\(\Leftrightarrow x-4=25\)
\(\Leftrightarrow x=29\) thỏa \(x\inℤ\)
b) \(\dfrac{x}{4}=\dfrac{18}{x+1}\left(x\ne-1\right)\)
\(\Leftrightarrow x\left(x+1\right)=18.4\)
\(\Leftrightarrow x\left(x+1\right)=72\)
vì \(72=8.9=\left(-8\right).\left(-9\right)\)
\(\Leftrightarrow x\in\left\{8;-9\right\}\left(x\inℤ\right)\)
c) \(2x+3⋮x+4\) \(\left(x\ne-4;x\inℤ\right)\)
\(\Leftrightarrow2x+3-2\left(x+4\right)⋮x+4\)
\(\Leftrightarrow2x+3-2x-8⋮x+4\)
\(\Leftrightarrow-5⋮x+4\)
\(\Leftrightarrow x+4\in\left\{-1;1;-5;5\right\}\)
\(\Leftrightarrow x\in\left\{-5;-3;-9;1\right\}\)
a. Tìm a, biết: 1 - ( 5\(\dfrac{4}{9}\) + a - 7\(\dfrac{7}{18}\) ) : 15\(\dfrac{3}{4}\) = 0
b. Tính b = ( \(\dfrac{2}{15}\) + \(\dfrac{5}{3}\) - \(\dfrac{3}{5}\) ) : ( \(4\dfrac{2}{3}\) - \(2\dfrac{1}{2}\) )
a: \(1-\left(5\dfrac{4}{9}+a-7\dfrac{7}{18}\right):15\dfrac{3}{4}=0\)
=>\(\left(5+\dfrac{4}{9}+a-7-\dfrac{7}{18}\right):\dfrac{63}{4}=1\)
=>\(\left(a-2+\dfrac{1}{18}\right)=\dfrac{63}{4}\)
=>\(a-\dfrac{35}{18}=\dfrac{63}{4}\)
=>\(a=\dfrac{63}{4}+\dfrac{35}{18}=\dfrac{637}{36}\)
b: \(B=\left(\dfrac{2}{15}+\dfrac{5}{3}-\dfrac{3}{5}\right):\left(4\dfrac{2}{3}-2\dfrac{1}{2}\right)\)
\(=\dfrac{2+5\cdot5-3^2}{15}:\left(4+\dfrac{2}{3}-2-\dfrac{1}{2}\right)\)
\(=\dfrac{2+4^2}{15}:\left(2+\dfrac{2}{3}-\dfrac{1}{2}\right)\)
\(=\dfrac{18}{15}:\dfrac{13}{6}=\dfrac{6}{5}\cdot\dfrac{6}{13}=\dfrac{36}{65}\)
1. tìm các số chưa biết :
a) \(\dfrac{4}{3}\)= \(\dfrac{8}{x}\)=\(\dfrac{-y}{21}\)=\(\dfrac{-40}{z}\)=\(\dfrac{16}{t}\)=\(\dfrac{y}{111}\)
b) \(\dfrac{-7}{6}=\dfrac{x}{18}=\dfrac{-98}{y}=\dfrac{14}{y}=\dfrac{-14}{z}=\dfrac{t}{102}=\dfrac{4}{-78}\)
2. tìm x biết :
a) \(\dfrac{2}{x}=\dfrac{x}{8}\)
b) \(\dfrac{2x-9}{240}=\dfrac{39}{80}\)
c) \(\dfrac{x-1}{9}=\dfrac{8}{3}\)
mn giúp mk nha :>
Bài 2:
\(a,\dfrac{2}{x}=\dfrac{x}{8}\\ \Rightarrow x.x=8.2\\ \Rightarrow x^2=16\\ \Rightarrow x=\pm4\)
\(b,\dfrac{2x-9}{240}=\dfrac{39}{80}\\ \Rightarrow80\left(2x-9\right)=240.39\\ \Rightarrow160x-720=9360\\ \Rightarrow160x=10080\\ \Rightarrow x=63\)
\(c,\dfrac{x-1}{9}=\dfrac{8}{3}\\ \Rightarrow3\left(x-1\right)=8.9\\ \Rightarrow3\left(x-1\right)=72\\ \Rightarrow x-1=24\\ \Rightarrow x=25\)
1, tìm a,b thuộc Z biết : a) \(\dfrac{a}{5}+\dfrac{1}{10}=-\dfrac{1}{b}\)
b) \(\dfrac{a}{9}-\dfrac{3}{b}=\dfrac{1}{18}\)
b, tìm x để \(A=\dfrac{5x}{3}:\dfrac{10x^2+5x}{21}\) là số nguyên .
a,Tìm x,y,z biết: \(\dfrac{y+z+1}{x}\)=\(\dfrac{x+z+2}{y}\)=\(\dfrac{x+y-3}{z}\)=\(\dfrac{1}{x+y+z}\)
b,Cho \(\dfrac{a}{b}\)=\(\dfrac{b}{c}\)=\(\dfrac{c}{d}\). Chứng minh rằng: (\(\dfrac{a+b+c}{b+c+d}\))3=\(\dfrac{a}{d}\)
c,Cho \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\). Chứng minh rằng: \(\dfrac{5a+3b}{5c+3d}\)=\(\dfrac{5a-3b}{5c-3d}\)
d,Cho \(\dfrac{3x-2y}{4}\)=\(\dfrac{2z-4x}{3}\)=\(\dfrac{4y-3z}{2}\).Chứng minh rằng: \(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{4}\)
b/ \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
\(\Rightarrow\left(\dfrac{a}{b}\right)^3=\dfrac{a}{d}\left(1\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
=> \(\left(\dfrac{a}{b}\right)^3=\left(\dfrac{a+b+c}{c+d+b}\right)^3\) (2)Từ (1) và (2)=>đpcm
1/Cho x+y=9; xy=18. Tính giá trị A=x3-y3
2/Cho \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=2\); \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=0\). Tính \(M=\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}\)
1, Ta có: \(x+y=9\Rightarrow\left(x+y\right)^2=81\)
\(\Rightarrow x^2+2xy+y^2=81\)
\(\Rightarrow x^2+y^2=45\)
\(\Rightarrow x^2+y^2-2xy=9\)
\(\Rightarrow\left(x-y\right)^2=9\Rightarrow\left[{}\begin{matrix}x-y=3\\x-y=-3\end{matrix}\right.\)
\(A=x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(\Rightarrow\left[{}\begin{matrix}A=3.63=189\\A=-3.63=-189\end{matrix}\right.\)
Vậy...