\(\left(-\dfrac{1}{2}x^5y^7z^{n-3}+3x^{n-2}y^8\right):\left(-3x^4y^{n-2}\right)\)
Tìm số tự nhiên n để phép chia trên là phép chia hết
________________
Mình ra \(n\in\left\{6,7,8,9\right\}\) đúng k ạ?
\(\left(-\dfrac{1}{2}x^5y^7z^{n-3}+3x^{n-2}y^8\right):\left(-3x^4y^{n-2}\right)\)
Tìm số tự nhiên n để phép chia trên là phép chia hết
________________
Mình ra \(n\in\left\{6,7,8,9\right\}\) đúng k ạ?
\(A=\dfrac{1}{6}xy^{7-n+2}z^{n-3}-x^{n-2-4}y^{8-n+2}\)
\(=\dfrac{1}{6}xy^{9-n}z^{n-3}-x^{n-6}y^{10-n}\)
Để đây là phép chia hết thì 9-n>=0 và n-3>=0 và n-6>=0 và 10-n>=0
=>n<=9 và n>=6
=>n thuộc {6;7;8;9}
Cho \(\hept{\begin{cases}a_1>a_2>...>a_n>0\\1\le k\in Z\end{cases}}\)
CMR : \(a_1+\frac{1}{a_n\left(a_1-a_2\right)^k\left(a_2-a_3\right)^k...\left(a_{n-1}-a_n\right)^k}\ge\frac{\left(n-1\right)k+2}{\sqrt[\left(n-1\right)k+2]{k^{\left(n-1\right)k}}}\)
cho \(n\in N\) Xét đa thức \(P\left(x\right)\in R\left(x\right)\) thỏa mãn \(\left|P\left(k\right)-3^k\right|< 1\), k=1,2...,n. Chứng minh rằng \(degP\left(x\right)\ge n\)
Chứng minh rằng với k \(\in\) N* ta luôn có \(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)=3k\left(k+1\right)\)
Ta có:
\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)\\ =k\left(k+1\right)\left[\left(k-2\right)-\left(k-1\right)\right]\\ =k\left(k+1\right)\left[k-2-k+1\right]\\ =k\left(k+1\right)\left\{\left[k+\left(-k\right)\right]+\left(2+1\right)\right\}\\ =k\left(k+1\right).3\\ =3.k\left(k+1\right)\)
Vậy \(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)\\ =3.k.\left(k+1\right)\)
Ta có:
\(VT=k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)\)
\(=k\left(k+1\right)\left[\left(k+2\right)-\left(k-1\right)\right]\)
\(=k\left(k+1\right)\left[k+2-k+1\right]\)
\(=k\left(k+1\right)\left[\left(k-k\right)+\left(2+1\right)\right]\)
\(=k\left(k+1\right).3\)
\(=3k\left(k+1\right)\)
\(\Rightarrow VT=VP\)
Vậy với \(k\in N\)* thì ta luôn có:
\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)=3k\left(k+1\right)\) (Đpcm)
Cho đa thức \(f\left(x\right)=x^2+mx+n\) với \(m,n\in Z\). Chứng minh rằng tồn tại số nguyên k để \(f\left(k\right)=f\left(2021\right).f\left(2022\right)\)
Xét \(f\left[f\left(x\right)+x\right]=\left[f\left(x\right)+x\right]^2+m\left[f\left(x\right)+x\right]+n\)
\(=\left(x^2+mx+n+x\right)^2+m\left(x^2+mx+n+x\right)+n\)
\(=\left(x^2+mx+n\right)^2+2x\left(x^2+mx+n\right)+x^2+m\left(x^2+mx+n\right)+mx+n\)
\(=\left(x^2+mx+n\right)^2+2x\left(x^2+mx+n\right)+m\left(x^2+mx+n\right)+\left(x^2+mx+n\right)\)
\(=\left(x^2+mx+n\right)\left(x^2+mx+n+2x+m+1\right)\)
\(=\left(x^2+mx+n\right)\left[\left(x+1\right)^2+m\left(x+1\right)+n\right]\)
\(=f\left(x\right).f\left(x+1\right)\)
Thay \(x=2021\)
\(\Rightarrow f\left[f\left(2021\right)+2021\right]=f\left(2021\right).f\left(2022\right)\)
Đặt \(f\left(2021\right)+2021=k\)
Do \(f\left(x\right)\) có hệ số m;n nguyên \(\Rightarrow k\) nguyên
\(\Rightarrow f\left(k\right)=f\left(2021\right).f\left(2022\right)\) với k nguyên
Hay tồn tại số nguyên k thỏa mãn yêu cầu
Cho số nguyên tố \(p=4k+1\left(k\in N;k>0\right)\)
∃ hay không một số tự nhiên n thỏa mãn \(n^2+2^n\)là \(B\left(2p\right)?\)
Ta có: \(\hept{\begin{cases}4k\equiv-1\left(modp\right)\\4k-1\equiv-2\left(modp\right)\end{cases}}\)
\(\Rightarrow\left(4k\right)!\equiv\left[\left(2k\right)!\right]^2\left(modp\right)\)
Theo định lý Wilson kết hợp với định lý Fecma nhỏ ta có:
Với \(n=4k\left(2k\right)!\) thì:
\(2^n-1\left[2^{\left(2k\right)!}\right]^{4k}-1\equiv0\left(modp\right)\)
\(\Rightarrow n^2+2^n=\left[4k.\left(2k\right)!\right]^2+2^{4k\left(2k\right)!}\equiv0\left(modp\right)\)
\(\Rightarrow\) Có vô số giá trị của \(n\) thỏa mãn.
CMR: \(1^k+2^k+...+n^k⋮\dfrac{n\left(n+2\right)}{2}\)(\(n,k\in N\)*, k lẻ)
Chứng minh: Với k\(\in\)N, ta luôn có: \(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)=3.k\left(k+1\right)\)
k(k+1)(k+2)-(k-1)k(k+1)
=(k+1)(k2+2k)-(k2-k)(k+1)
=(k+1)[(k2+2k)-(k2-k)]
=(k+1)[k2+2k-k2+k]
=(k+1)[(k2-k2)+(2k+k)]
=(k+1)3k (Đpcm)
Rút gọn biểu thức:
\(B=\sum_{k=1}^n\left(k.k!\right)\)
\(C=\sum_{k=2}^n\left(\frac{k-1}{k!}\right)\)
Chứng minh:
\(n!\ge2^{n-1}\left(\forall n\in N^{\cdot}\right)\)
\(B=1!+2.2!+3.3!+...+k.k!\)
\(=1!+\left(3-1\right)2!+\left(4-1\right)3!+...+\left(k+1-1\right)k!\)
\(=1!+3!-2!+4!-3!+...+\left(k+1\right)!-k!\)
\(=\left(k+1\right)!-1\)
\(C=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{n-1}{n!}\)
\(=\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+\frac{4}{4!}-\frac{1}{4!}+...+\frac{n}{n!}-\frac{1}{n!}\)
\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\)
\(=1-\frac{1}{n!}\)
2.
Với \(n=0\Rightarrow1\ge\frac{1}{2}\) đúng
Với \(n=1\Rightarrow1\ge1\) đúng
Giả sử BĐT đúng với \(n=k\ge2\) hay \(k!\ge2^{k-1}\)
Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay \(\left(k+1\right)!\ge2^k\)
Thật vậy, ta có:
\(\left(k+1\right)!=k!\left(k+1\right)\ge2^{k-1}.\left(k+1\right)>2^{k-1}.2=2^k\) (đpcm)
Let \(a,b,c,k\) be positive real numbers such that \(k\left(ab+bc+ca\right)+2abc\le k^3\) . Prove that:
\(\left(1\right)k\left(a+b+c\right)\ge2\left(ab+bc+ca\right)\)
\(\left(2\right)k\left(a^3+b^3+c^3\right)\ge2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\left(3\right)k\left(a^{2n-1}+b^{2n-1}+c^{2n-1}\right)\ge2\left(a^nb^n+b^nc^n+c^na^n\right)\) \(\left(n\ge0;n\in R\right)\)
mày bị điên rồi hả câu hỏi thế này làm gì có người giải được