Đại số lớp 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Hải Yến

Chứng minh rằng với k \(\in\) N* ta luôn có \(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)=3k\left(k+1\right)\)

Nguyen THi HUong Giang
22 tháng 3 2017 lúc 20:59

Ta có:

\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)\\ =k\left(k+1\right)\left[\left(k-2\right)-\left(k-1\right)\right]\\ =k\left(k+1\right)\left[k-2-k+1\right]\\ =k\left(k+1\right)\left\{\left[k+\left(-k\right)\right]+\left(2+1\right)\right\}\\ =k\left(k+1\right).3\\ =3.k\left(k+1\right)\)

Vậy \(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)\\ =3.k.\left(k+1\right)\)

Hoang Hung Quan
22 tháng 3 2017 lúc 21:02

Ta có:

\(VT=k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)\)

\(=k\left(k+1\right)\left[\left(k+2\right)-\left(k-1\right)\right]\)

\(=k\left(k+1\right)\left[k+2-k+1\right]\)

\(=k\left(k+1\right)\left[\left(k-k\right)+\left(2+1\right)\right]\)

\(=k\left(k+1\right).3\)

\(=3k\left(k+1\right)\)

\(\Rightarrow VT=VP\)

Vậy với \(k\in N\)* thì ta luôn có:

\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)=3k\left(k+1\right)\) (Đpcm)

Trèo lên cột điện thế hi...
22 tháng 3 2017 lúc 21:09

hinh nhu de sai


Các câu hỏi tương tự
Ngô Diệu Linh
Xem chi tiết
Trần Thị Đào
Xem chi tiết
Trần Thị Đào
Xem chi tiết
Đỗ Thị Huyền Trang
Xem chi tiết
Dung Trương Thuy
Xem chi tiết
Bùi Thái Sơn
Xem chi tiết
Trần Thùy Linh
Xem chi tiết
Đỗ Diệu Linh
Xem chi tiết
Vũ Thị Vân Anh
Xem chi tiết