a) tính GTLN của :
A= -4x^2+4x -1
b) Tìm GTNN của :
B= 3x^2+ 2x+5
Tìm GTNN
a) A= 4x^2+11x-2
b) B= 3x^2-2x-1
Tìm GTLN
a) A = -x^2+3x-1
b) B = -x^2-4x+7
a)A=4(x+11/8)^2 -153/16
Min A=-153/16 khi x=-11/8
b)B=3(x-1/3)^2 -4/3
Min B=-4/3 khi x=1/3
Bài 1:
a) \(A=4x^2+11x-2=\left(4x^2+11x+\dfrac{121}{16}\right)-\dfrac{153}{16}=\left(2x+\dfrac{11}{4}\right)^2-\dfrac{153}{16}\ge-\dfrac{153}{16}\)
\(minA=-\dfrac{153}{16}\Leftrightarrow x=-\dfrac{11}{8}\)
b) \(B=3x^2-2x-1=3\left(x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\dfrac{4}{3}=3\left(x-\dfrac{1}{3}\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)
\(minB=-\dfrac{4}{3}\Leftrightarrow x=\dfrac{1}{3}\)
Bài 2:
a) \(A=-x^2+3x-1=-\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{5}{4}=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\)
\(maxA=\dfrac{5}{4}\Leftrightarrow x=\dfrac{3}{2}\)
b) \(B=-x^2-4x+7=-\left(x^2+4x+4\right)+11=-\left(x+2\right)^2+11\le11\)
\(maxB=11\Leftrightarrow x=-2\)
Bài 1:
a: Ta có: \(A=4x^2+11x-2\)
\(=4\left(x^2+\dfrac{11}{4}x-\dfrac{1}{2}\right)\)
\(=4\left(x^2+2\cdot x\cdot\dfrac{11}{8}+\dfrac{121}{64}-\dfrac{153}{64}\right)\)
\(=4\left(x+\dfrac{11}{8}\right)^2-\dfrac{153}{16}\ge-\dfrac{153}{16}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{11}{8}\)
b: Ta có: \(B=3x^2-2x-1\)
\(=3\left(x^2-\dfrac{2}{3}x-\dfrac{1}{3}\right)\)
\(=3\left(x^2-2\cdot x\cdot\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{4}{9}\right)\)
\(=3\left(x-\dfrac{1}{3}\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)
Tìm GTNN ( hoặc GTLN ) của biểu thức
A = x^2-4x+1
B = 2x^2-x+1
C = x^2-x+1
D = -x^2+x-3
E = -x^2+2x-2
F = -3x^2+x-2
\(A=x^2-4x+1\)
\(A=x^2-4x+4-3\)
\(A=\left(x-2\right)^2-3\)
Min A = -3
Min A xảy ra khi (x-2)2=0
x-2=0
x=2
A đến C là tìm GTNN
\(A=x^2-4x+1=\left(x-2\right)^2-3\ge-3\)
Dấu "=" xảy ra ⇔ x=2
\(B=2x^2-x+1=2\left(x^2-2.\dfrac{1}{4}x+\dfrac{1}{16}\right)+\dfrac{7}{8}=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{4}\)
\(C=x^2-x+1=\left(x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\)
D đến F là tìm GTLN
\(E=-x^2+2x-2=-\left(x^2-2x+1\right)-1=-\left(x-1\right)^2-1\le-1\)
Do (x-1)2≥0 ⇔-(x-1)2≤0 ⇔ D≤-1
Dấu "=" xảy ra ⇔ x=1
\(D=-x^2+x-3=-\left(x^2-2.\dfrac{1}{2}+\dfrac{1}{4}\right)-\dfrac{11}{4}=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{11}{4}\le-\dfrac{11}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\)
\(F=-3x^2+x-2=-3\left(x^2-2.\dfrac{1}{6}+\dfrac{1}{36}\right)-\dfrac{23}{12}=-3\left(x-\dfrac{1}{6}\right)-\dfrac{23}{12}\le-\dfrac{23}{12}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{6}\)
Tìm GTNN ( hoặc GTLN ) của biểu thức
A = x^2-4x+1
B = 2x^2-x+1
C = x^2-x+1
D = -x^2+x-3
E = -x^2+2x-2
F = -3x^2+x-2
mong mn giúp ạ
\(A=x^2-4x+1=\left(x^2-4x+4\right)-3=\left(x-2\right)^2-3\ge-3\)
Vậy \(A_{Min}=-3khix=2\)
Tìm GTLN của các biểu thức sau:
a) A= -4x^2+4x-1
b) B= -x^2+5x
c) C= -3x^2-9x+6
a: \(A=-4x^2+4x-1\)
\(=-\left(4x^2-4x+1\right)\)
\(=-\left(2x-1\right)^2\le0\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
b: \(B=-x^2+5x\)
\(=-\left(x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}\right)+\dfrac{25}{4}\)
\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
a) \(A=-4x^2+4x-1=-\left(4x^2-4x+1\right)\)
\(=-\left(2x-1\right)^2\le0\)
\(maxA=0\Leftrightarrow x=\dfrac{1}{2}\)
b) \(B=-x^2+5x=-\left(x^2-5x+\dfrac{25}{4}\right)+\dfrac{25}{4}\)
\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\)
\(maxB=\dfrac{25}{4}\Leftrightarrow x=\dfrac{5}{2}\)
c) \(C=-3x^2-9x+6=-3\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{51}{4}\)
\(=-3\left(x+\dfrac{3}{2}\right)^2+\dfrac{51}{4}\le\dfrac{51}{4}\)
\(maxC=\dfrac{51}{4}\Leftrightarrow x=-\dfrac{3}{2}\)
1. Tìm GTNN của biểu thức :
A = 4x2 - 4x + 5 ; B = 3x2 + 6x - 1
2. Tìm GTLN của biểu thức :
A = 10 + 6x - x2 ; B = 7 - 5x - 2x2
1/
a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)
Dấu "=" xảy ra khi x=1/2
Vậy Amin=4 khi x=1/2
b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)
Dấu "=" xảy ra khi x=-1
Vậy Bmin = -4 khi x=-1
2/
a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)
Dấu "=" xảy ra khi x=3
Vậy Amax = 19 khi x=3
b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)
Dấu "=" xảy ra khi x=5/4
Vậy Bmax = 31/8 khi x=5/4
a, Tìm GTNN: A = \(\dfrac{x^2-2x+2013}{x^2}\) ; x>0
b, Tìm GTLN và GTNN của: B = \(\dfrac{4x+1}{4x^2+2}\)
a.
\(A=\dfrac{2013}{x^2}-\dfrac{2}{x}+1=2013\left(\dfrac{1}{x}-\dfrac{1}{2013}\right)^2+\dfrac{2012}{2013}\ge\dfrac{2012}{2013}\)
Dấu "=" xảy ra khi \(x=2013\)
b.
\(B=\dfrac{4x^2+2-4x^2+4x-1}{4x^2+2}=1-\dfrac{\left(2x-1\right)^2}{4x^2+2}\le1\)
\(B_{max}=1\) khi \(x=\dfrac{1}{2}\)
\(B=\dfrac{-2x^2-1+2x^2+4x+2}{4x^2+2}=-\dfrac{1}{2}+\dfrac{\left(x+1\right)^2}{2x^2+1}\ge-\dfrac{1}{2}\)
\(B_{max}=-\dfrac{1}{2}\) khi \(x=-1\)
Bài 4: Tìm GTLN hoặc GTNN của biểu thức:
A = x2 - 2x – 1
B = 4x2 + 4x +8
C = 3x - x2 + 2
D = -x2 - 5x
E = x2 - 4xy + 5y2 + 10x - 22y + 28
a)
Ta có:
\(A=x^2-2x-1=x^2-2x+1-2=\left(x-1\right)^2-2\)
\(\ge0-2=-2\)
Vậy \(A_{min}=-2\), đạt được khi và chỉ khi \(x-1=0\Leftrightarrow x=1\)
b)\(B=4x^2+4x+8=4x^2+4x+1+7\)
\(=\left(2x+1\right)^2+7\ge0+7=7\)
Vậy \(B_{min}=7\), đạt được khi và chỉ khi \(2x+1=0\Leftrightarrow x=\dfrac{-1}{2}\)
c)
Ta có:
\(C=3x-x^2+2=2-\left(x^2-3x\right)\)
\(=2+\dfrac{9}{4}-\left(x^2-2x.\dfrac{3}{2}+\dfrac{9}{4}\right)\)
\(=\dfrac{17}{4}-\left(x-\dfrac{3}{2}\right)^2\le\dfrac{17}{4}-0=\dfrac{17}{4}\)
Vậy \(C_{max}=\dfrac{17}{4}\), đạt được khi và chỉ khi \(x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{2}\)
d) Ta có:
\(D=-x^2-5x=-\left(x^2+5x\right)=\dfrac{25}{4}-\left(x^2+2x.\dfrac{5}{2}+\dfrac{25}{4}\right)\)
\(=\dfrac{25}{4}-\left(x+\dfrac{5}{2}\right)^2\le\dfrac{25}{4}-0=\dfrac{25}{4}\)
Vậy \(D_{max}=\dfrac{25}{4}\), đạt được khi và chỉ khi \(x+\dfrac{5}{2}=0\Leftrightarrow x=-\dfrac{5}{2}\)
e) Ta có:
\(E=x^2-4xy+5y^2+10x-22y+28\)
\(=x^2+4y^2+5^2-4xy+10x-20y+y^2-2y+1+2\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)
\(\ge0+0+2=2\)
Vậy \(E_{min}=2\), đạt được khi và chỉ khi \(x-2y+5=y-1=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
cho A=4x^2+4x+2 b=2x^2-2x+1 c=-15-x^2+6x
a,tìm gtln (gtnn) của a,b,c
`A=(2x)^2+2.2x.1+1^2+1=(2x+1)^2+1`
`=> A_(min)=1 <=>x=-1/2`
`B=(\sqrt2x)^2-2.\sqrt2 x . \sqrt2/2 + (\sqrt2/2)^2 + 1/2`
`=(\sqrt2x-\sqrt2/2)^2+1/2`
`=> B_(min)=1/2 <=> x=1/2`
`C=-(x^2-2.x.3+3^2+6)=-(x-3)^2-6`
`=> C_(max)=-6 <=> x=3`
Bài 1 : Tìm GTNN dựa vào tính chất ( a + b)^2 = a^2 + 2ab+b^2
a, 4x^2 -4x -2
b, x^4 + 4x^2+1
c, 2x^2 -20x -7
Bài 2 : Tìm GTLN của các biểu thức : dựa vào tính chất ( a + b)^2 = a^2 + 2ab+b^2
a, 3/4 -3(x-2/5)^2
b,-x^2 + 4x+5
c, -9x^2-6x-2
d, -x^2 + 5x+1/2
e, -3x^2 -21x+2