Giúp mình câu d và câu e với ạ
Giúp mình trả câu e và câu d. Mình cảm ơn ạ
d. \(\dfrac{\pi}{2}< a;b< \pi\Rightarrow sina>0;sinb>0\)
\(sina=\sqrt{1-cos^2a}=\dfrac{4}{5}\Rightarrow tana=\dfrac{sina}{cosa}=-\dfrac{4}{3}\)
\(sinb=\sqrt{1-cos^2b}=\dfrac{5}{13}\Rightarrow tanb=-\dfrac{5}{12}\)
Vậy:
\(sin\left(a-b\right)=sina.cosb-cosa.sinb=\dfrac{4}{5}.\left(-\dfrac{12}{13}\right)-\left(-\dfrac{3}{5}\right)\left(\dfrac{5}{13}\right)=...\)
\(cos\left(a-b\right)=cosa.cosb-sina.sinb=...\) (bạn tự thay số bấm máy)
\(tan\left(a+b\right)=\dfrac{tana+tanb}{1-tana.tanb}=...\)
\(cot\left(a+b\right)=\dfrac{1}{tan\left(a+b\right)}=\dfrac{1-tana.tanb}{tana+tanb}=...\)
e.
\(0< y< \dfrac{\pi}{2}\Rightarrow cosy>0\Rightarrow cosy=\sqrt{1-sin^2y}=\dfrac{4}{5}\)
\(\Rightarrow tany=\dfrac{siny}{cosy}=\dfrac{3}{4}\)
Vậy: \(tan\left(x+y\right)=\dfrac{tanx+tany}{1-tanx.tany}=...\)
\(cot\left(x-y\right)=\dfrac{1}{tan\left(x-y\right)}=\dfrac{1+tanx.tany}{tanx-tany}=...\)
Giúp mình câu c, d, e với ạ
a: \(A=\dfrac{x\left(x+2\right)}{\left(x-2\right)^2}:\dfrac{x^2-4+x+6-x^2}{x\left(x-2\right)}\)
\(=\dfrac{x\left(x+2\right)}{x-2}\cdot\dfrac{x}{x+2}=\dfrac{x^2}{x-2}\)
c: A<0
=>x-2<0
=>x<2
d: B nguyên
=>x^2-4+4 chia hết cho x-2
=>x-2 thuộc {1;-1;2;-2;4;-4}
=>x thuộc {3;1;4;6}
Giúp mình câu d và e thôi ạ
giải giúp mình câu h và j, với ý cuối của câu e với ạ.
a: Xét tứ giác OBAC có
\(\widehat{OBA}+\widehat{OCA}=180^0\)
Do đó: OBAC là tứ giác nội tiếp
giải giúp mình câu e, h và j với ạ
Các bạn giúp mình câu b;c;d;e ạ. Các bạn làm được câu nào thì làm ạ, còn bạn nào giỏi giúp mình nhiều hơn thì tốt ạ!
giúp mình câu 8 và 9 ạ , gấp lắm mn ơi , cứu e với
Câu 8.
a)\(R_1//R_2\Rightarrow R_{12}=\dfrac{R_1\cdot R_2}{R_1+R_2}=\dfrac{18\cdot12}{18+12}=7,2\Omega\)
\(I=\dfrac{U}{R}=\dfrac{18}{7,2}=2,5A\)
\(U_1=U_2=U=18V\)
\(I_1=\dfrac{U_1}{R_1}=\dfrac{18}{18}=1A\)
\(I_2=I-I_1=2,5-1=1,5A\)
\(P_m=\dfrac{U_m^2}{R_{tđ}}=\dfrac{18^2}{7,2}=45W\)
b)Chiều dài dây \(l_1\) là: \(R_1=\rho\cdot\dfrac{l_1}{S_1}\)
\(\Rightarrow18=1,7\cdot10^{-8}\cdot\dfrac{l_1}{0,01\cdot10^{-8}}\Rightarrow l_1=\dfrac{9}{85}m\approx0,106m\)
c)Công suất tiêu thụ của đoạn mạch tăng gấp đôi: \(P_m=2\cdot45=90W\)
Điện trở tương đương: \(R_{tđ}=\dfrac{U^2}{P_m}=\dfrac{18^2}{90}=3,6\)
Thay đề bài thành
\(R_3//R_{12}\Rightarrow R_{tđ}=\dfrac{R_3\cdot R_{12}}{R_3+R_{12}}=\dfrac{R_3\cdot7,2}{R_3+7,2}=3,6\Rightarrow R_3=7,2\Omega\)
Câu 9.
\(R_đ=\dfrac{U_1^2}{P_1}=\dfrac{220^2}{100}=484\Omega;I_đ=\dfrac{P_1}{U_1}=\dfrac{100}{220}=\dfrac{5}{11}A\)
\(R_b=\dfrac{U_2^2}{P_2}=\dfrac{220^2}{600}=\dfrac{242}{3}\Omega;I_b=\dfrac{P_2}{U_2}=\dfrac{600}{220}=\dfrac{30}{11}A\)
\(R_q=\dfrac{U_3^2}{P_3}=\dfrac{220^2}{110}=440\Omega;I_q=\dfrac{P_3}{U_3}=\dfrac{110}{220}=0,5A\)
a)\(R_{tđ}=R_1+R_2+R_3=484+\dfrac{242}{3}+440=\dfrac{3014}{3}\Omega\)
\(I_1=I_2=I_3=I=\dfrac{U}{R_{tđ}}=\dfrac{220}{\dfrac{3014}{3}}=\dfrac{30}{137}A\approx0,22A\)
b)Điện năng mà các vật tiêu thụ trong 30 ngày là:
\(A_đ=\dfrac{U_đ^2}{R_đ}\cdot t=\dfrac{220^2}{484}\cdot6\cdot3600\cdot30=64800000J=18kWh\)
\(A_b=\dfrac{U_b^2}{R_b}\cdot t=\dfrac{220^2}{\dfrac{242}{3}}\cdot3\cdot3600\cdot30=194400000J=54kWh\)
\(A_q=\dfrac{U^2_q}{R_q}\cdot t=\dfrac{220^2}{440}\cdot10\cdot3600\cdot30=118800000J=33kWh\)
\(A=A_đ+A_b+A_q=18+54+33=105kWh\)
Câu 8. \(R_1\left|\right|R_2\)
(a) Cường độ dòng điện qua các điện trở:
\(\left\{{}\begin{matrix}I_1=\dfrac{U}{R_1}=\dfrac{18}{18}=1\left(A\right)\\I_2=\dfrac{U}{R_2}=\dfrac{18}{12}=1,5\left(A\right)\end{matrix}\right.\)
Công suất của mạch: \(P=\dfrac{U^2}{R}=\dfrac{U^2}{\dfrac{R_1R_2}{R_1+R_2}}=\dfrac{18^2}{\dfrac{18\cdot12}{18+12}}=45\left(W\right)\)
(b) \(S=0,01\left(mm^2\right)=10^{-8}\left(m^2\right)\)
Chiều dài dây: \(R_1=\rho\cdot\dfrac{l}{S}\Rightarrow l=\dfrac{R_1S}{\rho}=\dfrac{18\cdot10^{-8}}{1,7\cdot10^{-8}}\approx10,59\left(m\right)\)
(c) Đề sai.
giúp mình bài 6 với ạ trừ câu a còn các câu b,c,d, giúp mình với ạ
\(b,N=\left(2x-1\right)^2-4\ge-4\\ N_{min}=-4\Leftrightarrow x=\dfrac{1}{2}\\ c,P=\left(2x-5\right)^2+6\left(2x-5\right)+9-4\\ P=\left(2x-5+3\right)^2-4=\left(2x-2\right)^2-4\ge-4\\ P_{min}=-4\Leftrightarrow x=1\\ d,Q=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1\\ Q=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\\ Q_{min}=1\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
6a.
$M=x^2-x+1=(x^2-x+\frac{1}{4})+\frac{3}{4}$
$=(x-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}$
Vậy $M_{\min}=\frac{3}{4}$ khi $x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}$