Tim x, biết:
x2-8x+12=0
tìm x, biết:
x2-9=0
\(\Leftrightarrow\left(x-3\right).\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
\(x^2-3^2=0\\ \left(x-3\right)\left(x+3\right)=0\\=> \left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow x=3;x=-3\)
Tìm x biết:
x2-2018x=0
\(x^2-2018x=0\\\Leftrightarrow x\left(x-2018\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-2018=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2018\end{matrix}\right.\)
Vậy `x=0` hoặc `x=2018`
x.(x - 2018) = 0
=> \(\left[{}\begin{matrix}x=0\\x-2018=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=0\\x=0+2018\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=0\\x=2018\end{matrix}\right.\)
Vậy x ϵ { 0 ; 2018 }
Tìm x , biết:
x2−2x−15=0
x2 - 2x - 15 = 0
x2 - 25 - 2x + 10 =0
( x2 - 25) - ( 2x -10) =0
(x-5)(x+5) - 2( x-5) =0
(x-5) ( x+5-2) =0
(x-5)(x+3)
\(\left[{}\begin{matrix}x-5=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
kết luận x \(\in\) { -3; 5}
Tìm x biết:
x2-2018x=0
2x2+5x=0
\(x^2-2018x=0\\ \Leftrightarrow x\left(x-2018\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-2108=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2018\end{matrix}\right.\)
Vậy `x=0` hoặc `x=2018`
\(2x^2+5x=0\\ \Leftrightarrow x\left(2x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\2x+5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{2}\end{matrix}\right.\)
Vậy `x=0` hoặc `x=-5/2`
Tìm x ∈ ℤ biết:
x2 = 100
\(x^2=100\)
\(\Leftrightarrow x=\pm\sqrt{100}=\pm10\)
Ta có: \(x^2=100\)
nên \(x\in\left\{10;-10\right\}\)
Vậy: \(x\in\left\{10;-10\right\}\)
Tim x
( x + 5 ) . ( x + 6 ) = 0
8x - 9x -2x - 15 = 0
( x + 5 ) . ( x + 6 ) = 0
\(\Leftrightarrow\left\{{}\begin{matrix}x+5=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\x=-6\end{matrix}\right.\)
Vậy \(x=-5\) hoặc \(x=-6\)
8x - 9x -2x - 15 = 0
\(\Rightarrow8x-9x-2x=0+15\)
\(\Rightarrow-3x=15\)
\(\Rightarrow x=15:\left(-3\right)\)
\(\Rightarrow x=-5\)
a, \(\left(x+5\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-6\end{matrix}\right.\)
Vậy ......
\(\left(x+5\right)\left(x+6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+5=0\\x+6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=-6\end{matrix}\right.\)
\(8x-9x-2x-15=0\)
\(\Rightarrow8x-9x-2x=15\)
\(\Rightarrow-3x=15\)
\(\Rightarrow x=-5\)
tim x 8x^3 + 12x^2 + 6x - 26 = 0
\(8x^3+12x^2+6x-26=0\)
<=> \(4x^3+6x^2+3x-13=0\)
<=> \(4x^3-4x^2+10x^2-10x+13x-13=0\)
<=> \(4x^2\left(x-1\right)+10x\left(x-1\right)+13\left(x-1\right)=0\)
<=> \(\left(x-1\right)\left(4x^2+10x+13\right)=0\)
<=> \(x-1=0\)
<=> \(x=1\)
Vậy...
Tìm các số nguyên tố x,y . Biết:
x2 + 117 = y2
Ta có :
Với x chẵn => x = 2 => 22 + 117 = y2
=> 121 = y2 => 112 = y2 => y = 11 (thoả mãn)
Với x lẻ => x2 cũng lẻ => x2 + 117 chẵn và x > 2
=> y2 chẵn => y = 2
Mà x < y => ko thoả mãn
Vậy x = 2 ; y = 11
Tìm x, biết:
x2 - 9 + 5x (x-3)=0
Mọi người giúp em với ạ
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)+5x\left(x-3\right)=0\\ \Leftrightarrow\left(x-3\right)\left(6x+3\right)=0\\ \Leftrightarrow3\left(x+2\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)