cho a+b+c=2016. CMR:(2016a+bc)(2016b+ac)(2016c+ab)=(a+b)^2(b+c)^2(c+a)^2
Cho a+b+c=2016.Tính giá trị của biểu thức K=\(\dfrac{2016a+bc}{a+b}+\dfrac{2016b+ac}{b+c}+\dfrac{2016c+ab}{c+a}\)
cho 3 số thực a,b,c >0 thỏa mãn a+b+c=2016
Chứng minh \(\dfrac{a}{a+\sqrt{2016a+bc}}+\dfrac{b}{b+\sqrt{2016b+ac}}+\dfrac{c}{c+\sqrt{2016c+ab}}\le1\)
Áp dụng BĐT Cauchy-Schwarz:
$\frac{a}{a+\sqrt{2016a + bc}}=\frac{a}{a+\sqrt{(a+b+c)a + bc}} =\frac{a}{a+\sqrt{(a+b)(c+a)}} \leq \frac{a}{a+\sqrt{(\sqrt{ab}+\sqrt{ac})^{2}}}=\frac{a}{a+\sqrt{ab}+\sqrt{ac}}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}$
$\Rightarrow \frac{a}{a+\sqrt{2016a + bc}} + \frac{b}{b+\sqrt{2016b + ca}} + \frac{c}{c+\sqrt{2016c + ab}}\leq \frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1$
...............................
Cho a + b + c = 2016.
Chứng minh rằng : (2016a+bc). (2016b+ac). (2016c+ab) = (a+b)2 . (b+c)2 . (c+a)2
~ Ai làm hộ mềnh đy ạ, mềnh tích choa :)
Ta có : \(2016a+bc=\left(a+b+c\right).a+bc=a^2+ab+ac+bc=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)
\(2016b+ac=\left(a+b+c\right).b+ac=ab+b^2+bc+ac=b\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(b+c\right)\)
\(2016c+ab=\left(a+b+c\right)c+ab=ac+bc+c^2+ab=a\left(b+c\right)+c\left(b+c\right)=\left(a+c\right)\left(b+c\right)\)
\(\Rightarrow\left(2016a+bc\right)\left(2016b+ac\right)\left(2016c+ab\right)=\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\) (đpcm)
Cho ba số thực a,b,c dương thỏa mãn:\(a+b+c=2016\)
Chứng minh:\(\frac{a}{a+\sqrt{2016a+bc}}+\frac{b}{b+\sqrt{2016b+ca}}+\frac{c}{c+\sqrt{2016c+ab}}\le1\)
Ap dông B§T C-S ta cã:
\(\frac{a}{a+\sqrt{2016a+bc}}=\frac{a}{a+\sqrt{\left(a+b+c\right)a+bc}}=\frac{a}{a+\sqrt{\left(a+b\right)\left(c+a\right)}}\)
\(\le\frac{a}{a+\sqrt{\left(\sqrt{ab}+\sqrt{ac}\right)^2}}=\frac{a}{a+\sqrt{ab}+\sqrt{ac}}\)
\(=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\). Tuong tù ta cx cã:
\(\frac{b}{b+\sqrt{2016b+ca}}\le\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}};\frac{c}{c+\sqrt{2016c+ab}}\le\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Céng theo vÕ c¸c B§T trªn ta dc:
\(VT\le\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\)
P/s:may mk bi loi Unikey r` mk dg ban chua kip chinh lai bn gang doc
Cho a,b,c\(\ge\)0 thỏa mãn a+b+c=1008. CMR: \(\sqrt{2016a+\frac{\left(b-c\right)^2}{2}}+\sqrt{2016b+\frac{\left(c-a\right)^2}{2}}+\sqrt{2016c+\frac{\left(a-b\right)^2}{2}}\le2016\sqrt{2}\)
a/b=c/d.chung minh: 2015a-2016b/2016c+2017d=2015c-2016c/2016a+2017b
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{2015a-2016b}{2016c+2017d}=\dfrac{2015bk-2016b}{2016dk+2017d}=\dfrac{2015k-2016}{2016k+2017}\)
\(\dfrac{2015c-2016d}{2016a+2017b}=\dfrac{2015dk-2016d}{2016bk+2017b}=\dfrac{2015k-2016}{2016k+2017}\)
Do đó: \(\dfrac{2015a-2016b}{2016c+2017d}=\dfrac{2015c-2016d}{2016a+2017b}\)
Cho 3 số không âm a,b,c thỏa mãn a+b+c=1008
Chứng minh
\(\sqrt{2016a+\frac{\left(b-c\right)^2}{2}}+\sqrt{2016b+\frac{\left(c-a\right)^2}{3}}+\sqrt{2016c+\frac{\left(a-b\right)^2}{2}}\le2016\sqrt{2}\)
cho 2016a+b+c+d/a=a+2016b+c+d/b=a+b+2016c+d/c=a+b+c+2016d/d tính M=a+b/c+d + c+d/d+a + c+d/a+b + d+a/b+c
\(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)
\(\Rightarrow\frac{2016a}{a}+\frac{b+c+d}{a}=\frac{2016b}{b}+\frac{a+c+d}{b}=\frac{2016c}{c}+\frac{a+b+d}{c}=\frac{2016d}{d}+\frac{a+b+c}{d}\)
\(\Rightarrow2016+\frac{b+c+d}{a}+1=2016+\frac{a+c+d}{b}+1=2016+\frac{a+b+d}{c}+1=2016+\frac{a+b+c}{d}+1\)
\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
\(\Rightarrow a=b=c=d\)
\(Khiđó:M=1+1+1+1=4\)
Cho \(a,b,c\in R^+\) thỏa mãn \(a+b+c=2018\)
Tìm \(Max\) \(P=\frac{a}{a+\sqrt{2016a-bc}}+\frac{b}{b+\sqrt{2016b-ca}}+\frac{c}{c+\sqrt{2016c-ab}}\)