Ta có : \(2016a+bc=\left(a+b+c\right).a+bc=a^2+ab+ac+bc=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)
\(2016b+ac=\left(a+b+c\right).b+ac=ab+b^2+bc+ac=b\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(b+c\right)\)
\(2016c+ab=\left(a+b+c\right)c+ab=ac+bc+c^2+ab=a\left(b+c\right)+c\left(b+c\right)=\left(a+c\right)\left(b+c\right)\)
\(\Rightarrow\left(2016a+bc\right)\left(2016b+ac\right)\left(2016c+ab\right)=\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\) (đpcm)