Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
mk rất trẻ con
Xem chi tiết
Hoàng Phúc
12 tháng 5 2016 lúc 15:05

2x2-2x+2=2(x2-x+1)

\(=2\left(x^2-\frac{1}{2}x-\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\right)\)

\(=2\left[x\left(x-\frac{1}{2}\right)-\frac{1}{2}\left(x-\frac{1}{2}\right)+\frac{3}{4}\right]=2\left(x-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)+\frac{3}{4}\)

\(=2\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

\(2\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow2\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

=>đa thức vô nghiệm

Hoàng Phúc
12 tháng 5 2016 lúc 15:07

câu sau xem lại đề

Quoc Tran Anh Le
Xem chi tiết
HT2k02
14 tháng 4 2023 lúc 18:01

1. Ta chọn $x=3k;y=4k;z=5k$ với $k$ là số nguyên dương.

Khi này $x^2+y^2=25k^2 =z^2$. Tức có vô hạn nghiệm $(x;y;z)=(3k;4k;5k)$ với $k$ là số nguyên dương thỏa mãn

HT2k02
14 tháng 4 2023 lúc 18:03

Câu 2:

Chọn $x=y=2k^3; z=2k^2$ với $k$ nguyên dương.

Khi này $x^2+y^2 =8k^6 = z^3$.

Tức tồn tại vô hạn $(x;y;z)=(2k^3;2k^3;2k^2) $ với $k$ nguyên dương là nghiệm phương trình.

Anh dam ngoc
16 tháng 4 2023 lúc 12:31

Câu 2:

Chọn x=y=2k3;z=2k2 với knguyên dương.

Khi này x2+y2=8k6=z3.

Tức tồn tại vô hạn (x;y;z)=(2k3;2k3;2k2) với k nguyên dương là nghiệm phương trình.

Phạm Gia Khang
Xem chi tiết
Knight™
29 tháng 5 2022 lúc 11:40

` 1x + 3x^2 =0`

` x( 3x + 1) = 0`

\(=>\left[{}\begin{matrix}x=0\\3x+1=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{3}\end{matrix}\right.\)

Vậy.....

Chuu
29 tháng 5 2022 lúc 11:45

` 1x + 3x^2 `

` 1x + 3x^2 =0`

` x.( 3x + 1) = 0`

\(=>\left[{}\begin{matrix}x=0\\3x+1=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\3x=-1\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{3}\end{matrix}\right.\)

Vậy nghiệm của đa thức là: ` 0, -1/3`

Nguyễn Thị Hà Vy
Xem chi tiết
slyn
Xem chi tiết
Shinichi Kudo
12 tháng 4 2022 lúc 19:22

\(x^2-x+2=0\)

\(\Leftrightarrow x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\) (vô lý)

=> Phương trình vô nghiệm

Knight™
12 tháng 4 2022 lúc 19:23

\(\Leftrightarrow x^2-2x+x+2=0\)

\(\Leftrightarrow x^2+x-2x+2=0\)

\(\Leftrightarrow x\left(x+1\right)-2\left(x-1\right)=0\)

hình như lí do là như vầy :>

Nguyễn Tuấn Minh
Xem chi tiết
Nguyễn Ngọc Ánh
Xem chi tiết
Cao Hoàng Minh Nguyệt
1 tháng 5 2016 lúc 14:15

Vô nghiệm là k có nghiệm đấy bn Trần Việt Hà!!!!! Nghiệm là giá trị làm cho biểu thức ấy = 0

ncjocsnoev
1 tháng 5 2016 lúc 12:50

vô nghiệp là sao vậy bạn

 

ncjocsnoev
1 tháng 5 2016 lúc 14:17

2x^2 - 3x + 5 = 0

→ 2x . 2x - 3x + 5 = 0

→ 4x - 3x + 5 = 0

→ x + 5 = 0

→ x ϵ  Φ

thành piccolo
Xem chi tiết
Huỳnh Thị Bích Tuyền
29 tháng 5 2015 lúc 20:53

\(-x^2+x-5\)

=\(-x^2+1.x-2^2+1\)

=\(x.\left(x-2\right)+2\left(x-2\right)+1\)

=\(\left(x-2\right)^2+1\ge1\ne0\)

Vậy đa thức trên vô nghiệm.

Thủy Lê
Xem chi tiết
Nguyễn Minh Đăng
7 tháng 7 2020 lúc 9:43

Bài làm:

Ta có: \(x^2-x-6=0\)

\(\Leftrightarrow\left(x^2-x+\frac{1}{4}\right)-\frac{25}{4}=0\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=\left(\frac{5}{2}\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{2}=\frac{5}{2}\\x-\frac{1}{2}=-\frac{5}{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

=> Mâu thuẫn với đề bài

=> điều giả sử sai

=> Phương trình có 2 nghiệm x=3 và x=-2

Khách vãng lai đã xóa
๖²⁴ʱ๖ۣۜTɦủү❄吻༉
7 tháng 7 2020 lúc 15:39

\(x^2-x-6=0\)

Vì \(\left(-1\right)^2-4.\left(-6\right)=1+24>0\)

Nên pt có 2 nghiệm phân biệt :

\(x_1=\frac{-1-5}{2}=-3;x_2=\frac{-1+5}{2}=2\)

=> ko thể CM pt vô nghiệm 

Khách vãng lai đã xóa