\(2\left|x\right|\)-\(\left|x-3\right|\) =3
Tìm x biết :
a) \(\left(x-2\right)^3+6\left(x+1\right)^2-x^3+12=0\)
b) \(\left(x-5\right)\left(x+5\right)-\left(x+3\right)^3+3\left(x-2\right)^2=\left(x+1\right)^2-\left(x+4\right)\left(x-4\right)+3x^2\)
c) \(\left(2x+3\right)^2+\left(x-1\right)\left(x+1\right)=5\left(x+2\right)^2-\left(x-5\right)\left(x+1\right)+\left(x+4\right)^2\)
d) \(\left(1-3x\right)^2-\left(x-2\right)\left(9x+1\right)=\left(3x-4\right)\left(3x+4\right)-9\left(x+3\right)^2\)
a/ \(x=\dfrac{-5}{12}\)
b/ \(x\approx-1,9526\)
c/ \(x=\dfrac{21-i\sqrt{199}}{10}\)
d/ \(x=\dfrac{-20}{13}\)
a) (x-2)3+6(x+1)2-x3+12=0
⇒ x3-6x2+12x-8+6(x2+2x+1)-x3+12=0
⇒ x3-6x2+12x-8+6x2+12x+6-x3+12=0
⇒ 24x+10=0
⇒ 24x=-10
⇒ x=-5/12
a.
PT \(\Leftrightarrow x^3-6x^2+12x-8+6(x^2+2x+1)-x^3+12=0\)
\(\Leftrightarrow x^3-6x^2+12x-8+6x^2+12x+6-x^3+12=0\)
\(\Leftrightarrow 24x+10=0\Leftrightarrow x=\frac{-5}{12}\)
b. Bạn xem lại đề, nghiệm khá xấu không phù hợp với mức độ tổng thể của bài.
c.
PT $\Leftrightarrow (4x^2+12x+9)+(x^2-1)=5(x^2+4x+4)+(x^2-4x-5)+9(x^2+6x+9)$
$\Leftrightarrow 10x^2+42x+64=0$
$\Leftrightarrow x^2+(3x+7)^2=-15< 0$ (vô lý)
Do đó pt vô nghiệm.
d.
PT $\Leftrightarrow (1-6x+9x^2)-(9x^2-17x-2)=(9x^2-16)-9(x^2+6x+9)$
$\Leftrightarrow 11x+3=-54x-97$
$\Leftrightarrow 65x=-100$
$\Leftrightarrow x=\frac{-20}{13}$
Giải các PT sau
a)\(\left(3\left(x+1\right)-2\left(x+3\right)\right)^3+\left(2\left(x+3\right)-x+5\right)^3+\left(x-5-3\left(x+1\right)\right)^3=0\)
b)\(\left(x-2\right)^3+\left(x-4\right)^3+\left(x-7\right)^3+3\left(x-2\right)\left(x-4\right)\left(x-7\right)=0\)
i, \(\left(x-1\right)\left(x+3\right)-\left(x-1\right)\left(2x+1\right)=0\)
k, \(\left(x+2\right)\left(x+1\right)-\left(x-3\right)\left(x+2\right)=0\)
l, \(\left(x-2\right)\left(x+3\right)=\left(x-2\right)\left(2x+5\right)\)
\(\left(x-1\right)\left(-x+2\right)=0\Leftrightarrow x=1;x=2\)
\(\left(x+2\right)\left(x+1-x+3\right)=0\Leftrightarrow x=-2\)
\(\left(x-2\right)\left(x+3\right)-\left(x-2\right)\left(2x+5\right)=0\Leftrightarrow\left(x-2\right)\left(-x-2\right)=0\Leftrightarrow x=-2;x=2\)
\(i,\left(x-1\right)\left(x+3\right)-\left(x-1\right)\left(2x+1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+3-2x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(-x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\\ k,\left(x+2\right)\left(x+1\right)-\left(x-3\right)\left(x+2\right)=0\\ \Leftrightarrow\left(x+2\right)\left(x+1-x+3\right)=0\\ \Leftrightarrow4\left(x+2\right)=0\\ \Leftrightarrow x+2=0\\ \Leftrightarrow x=-2\\ l,\left(x-2\right)\left(x+3\right)=\left(x-2\right)\left(2x+5\right)\\ \Leftrightarrow\left(x-2\right)\left(2x+5\right)-\left(x-2\right)\left(x+3\right)=0\\ \Leftrightarrow\left(x-2\right)\left(2x+5-x-3\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
a. \(\sqrt{x}\left(\sqrt{x}-3\right)-5\left(\sqrt{x}+3\right)\)
b. \(3\left(2+\sqrt{x}\right)+\left(\sqrt{x}+3\right)\left(2-\sqrt{x}\right)\)
c. \(\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-5\left(\sqrt{x}-1\right)\)
d. \(3\left(\sqrt{x}-2\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
a: Ta có: \(\sqrt{x}\left(\sqrt{x}-3\right)-5\left(\sqrt{x}+3\right)\)
\(=x-3\sqrt{x}-5\sqrt{x}-15\)
\(=x-8\sqrt{x}-15\)
b: Ta có: \(3\left(\sqrt{x}+2\right)+\left(\sqrt{x}+3\right)\left(2-\sqrt{x}\right)\)
\(=3\sqrt{x}+6+2\sqrt{x}-x+6-3\sqrt{x}\)
\(=-x+2\sqrt{x}+12\)
c: Ta có: \(\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-5\left(\sqrt{x}-1\right)\)
\(=x-9-5\sqrt{x}+5\)
\(=x-5\sqrt{x}-4\)
d: Ta có: \(3\left(\sqrt{x}-2\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
\(=3\sqrt{x}-6-x+1\)
\(=-x+3\sqrt{x}-5\)
Tìm \(x\):
\(8\)) \(1-\left(x-6\right)=4\left(2-2x\right)\)
\(9\))\(\left(3x-2\right)\left(x+5\right)=0\)
\(10\))\(\left(x+3\right)\left(x^2+2\right)=0\)
\(11\))\(\left(5x-1\right)\left(x^2-9\right)=0\)
\(12\))\(x\left(x-3\right)+3\left(x-3\right)=0\)
\(13\))\(x\left(x-5\right)-4x+20=0\)
\(14\))\(x^2+4x-5=0\)
\(8,1-\left(x-6\right)=4\left(2-2x\right)\)
\(\Leftrightarrow1-x+6=8-8x\)
\(\Leftrightarrow-x+8x=8-1-6\)
\(\Leftrightarrow7x=1\)
\(\Leftrightarrow x=\dfrac{1}{7}\)
\(9,\left(3x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-5\end{matrix}\right.\)
\(10,\left(x+3\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\varnothing\end{matrix}\right.\)
`8)1-(x-5)=4(2-2x)`
`<=>1-x+5=8-6x`
`<=>5x=2<=>x=2/5`
`9)(3x-2)(x+5)=0`
`<=>[(x=2/3),(x=-5):}`
`10)(x+3)(x^2+2)=0`
Mà `x^2+2 > 0 AA x`
`=>x+3=0`
`<=>x=-3`
`11)(5x-1)(x^2-9)=0`
`<=>(5x-1)(x-3)(x+3)=0`
`<=>[(x=1/5),(x=3),(x=-3):}`
`12)x(x-3)+3(x-3)=0`
`<=>(x-3)(x+3)=0`
`<=>[(x=3),(x=-3):}`
`13)x(x-5)-4x+20=0`
`<=>x(x-5)-4(x-5)=0`
`<=>(x-5)(x-4)=0`
`<=>[(x=5),(x=4):}`
`14)x^2+4x-5=0`
`<=>x^2+5x-x-5=0`
`<=>(x+5)(x-1)=0`
`<=>[(x=-5),(x=1):}`
\(11,=>\left[{}\begin{matrix}5x-1=0\\x^2-9=0\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=3\\x=-3\end{matrix}\right.\\ 12,=>\left(x+3\right)\left(x-3\right)=0\\ =>\left[{}\begin{matrix}x+3=0\\x-3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\\ 13,=>x\left(x-5\right)-4\left(x-5\right)=0\\ =>\left(x-4\right)\left(x-5\right)=0\\ =>\left[{}\begin{matrix}x-4=0\\x-5=0\end{matrix}\right.=>\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
\(14,=>x^2+5x-x-5=0\\ =>x\left(x+5\right)-\left(x+5\right)=0\\ =>\left(x-1\right)\left(x+5\right)=0\\ =>\left[{}\begin{matrix}x-1=0\\x+5=0\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
thực hiện phép tính
a,\(x^3+\left[\frac{x\left(2y^3-x^3\right)}{x^3+y^3}\right]^3-\left[\frac{y\left(2x^3-y^3\right)}{x^3+y^3}\right]^3\)
b,\(\frac{\frac{x\left(x+y\right)}{x-y}+\frac{x\left(x+z\right)}{x-z}}{1+\frac{\left(y-z\right)^2}{\left(x-y\right)\left(x-z\right)}}+\frac{\frac{y\left(y+z\right)}{y-z}+\frac{y\left(y+x\right)}{y-x}}{1+\frac{\left(z-x\right)^2}{\left(y-z\right)\left(y-x\right)}}+\frac{\frac{z\left(z+x\right)}{z-x}+\frac{z\left(z+y\right)}{z-y}}{1+\frac{\left(x-y\right)^2}{\left(z-x\right)\left(z-y\right)}}\)
c,\(\left[\frac{y+z-2x}{\frac{\left(y-z\right)^3}{y^3-z^3}+\frac{\left(x-y\right)\left(x-z\right)}{y^2+yz+z^2}}+\frac{z+x-2y}{\frac{\left(z-x\right)^3}{z^3-x^3}+\frac{\left(y-z\right)\left(y-x\right)}{z^2+xz+x^2}}+\frac{x+y-2z}{\frac{\left(x-y\right)^3}{x^3-y^3}+\frac{\left(z-x\right)\left(z-y\right)}{x^2+xy+y^2}}\right]:\frac{1}{x+y+z}\)
Giải phương trình:
a) \(x^2-\left(x+3\right)\left(3x+1\right)=9\).
b) \(x^3+4x+5=0\).
c) \(\left(x+14\right)^3-\left(x+12\right)^3=1352\).
d) \(x^3+\left(x-3\right)^3=\left(2x-3\right)^3\).
e) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=360\).
f) \(x^3+\left(x-2\right)\left(2x+1\right)=8\).
b) Ta có: \(x^3+4x+5=0\)
\(\Leftrightarrow x^3-x+5x+5=0\)
\(\Leftrightarrow x\left(x^2-1\right)+5\left(x+1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x-1\right)+5\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+5\right)=0\)
mà \(x^2-x+5>0\forall x\)
nên x+1=0
hay x=-1
Vậy: S={-1}
a)x2-(x+3)(3x+1)=9
⇔(x-3)(x+3)-(x+3)(3x+1)=0
⇔x+3=0 hoặc 3x+1=0
1.x+3=0 ⇔x=-3
2.3x+1=0⇔x=-1/3
phương trình có 2 nghiệm x=-3 và x=-1/3
giải phương trình
1)\(2\left(x-3\right)+1=2\left(x+1\right)-9\)
2)\(\dfrac{5-x}{2}=\dfrac{3x-4}{6}\)
3) \(\left(x-1\right)^2+\left(x+2\right)\left(x-2\right)=\left(2x+1\right)\left(x-3\right)\)
4)\(\left(x+5\right)\left(x-1\right)-\left(x+1\right)\left(x+2\right)=1\)
5) \(\dfrac{6x-1}{15}-\dfrac{x}{5}=\dfrac{2x}{3}\)
6)\(\dfrac{5\left(x-2\right)}{2}-\dfrac{x+5}{3}=1-\dfrac{4\left(x-3\right)}{5}\)
\(1,2\left(x-3\right)+1=2\left(x+1\right)-9\\ \Rightarrow2x-6+1=2x+2-9\\ \Rightarrow2x-5=2x-7\\ \Rightarrow-2=0\left(vô.lí\right)\)
\(2,\dfrac{5-x}{2}=\dfrac{3x-4}{6}\\ \Rightarrow30-6x=6x-8\\ \Rightarrow12x=38\\ \Rightarrow x=\dfrac{19}{6}\)
\(3,\left(x-1\right)^2+\left(x+2\right)\left(x-2\right)=\left(2x+1\right)\left(x-3\right)\\ \Rightarrow x^2-2x+1+x^2-4=2x^2-6x+x-3\\ \Rightarrow2x^2-2x-3=2x^2-5x-3\\ \Rightarrow3x=0\\ \Rightarrow x=0\)
\(4,\left(x+5\right)\left(x-1\right)-\left(x+1\right)\left(x+2\right)=1\\ \Rightarrow x^2+5x-x-5-x^2-2x-x-2=1\\ \\ \Rightarrow x-7=1\\ \Rightarrow x=8\)
\(5,\dfrac{6x-1}{15}-\dfrac{x}{5}=\dfrac{2x}{3}\\ \Rightarrow\dfrac{6x-1}{15}-\dfrac{3x}{15}=\dfrac{10x}{15}\\ \Rightarrow6x-1-3x=10x\\ \Rightarrow3x-1=10x\\ \Rightarrow7x=-1\\ \Rightarrow x=\dfrac{-1}{7}\)
\(6,\dfrac{5\left(x-2\right)}{2}-\dfrac{x+5}{3}=1-\dfrac{4\left(x-3\right)}{5}\\ \Rightarrow\dfrac{75\left(x-2\right)}{30}-\dfrac{10\left(x+5\right)}{30}=\dfrac{30}{30}-\dfrac{24\left(x-3\right)}{30}\\ \Rightarrow75\left(x-2\right)-10\left(x+5\right)=30-24\left(x-3\right)\\ \Rightarrow75x-150-10x-50=30-24x+72\\ \Rightarrow65x-200=102-24x\\ \Rightarrow89x=302\\ \Rightarrow x=\dfrac{320}{89}\)
\(\left(x-1\right)^3+3\left(x-3\right)^2-\left(x+2\right)\left(x^2-2x+4\right)=\left(x+2\right)^3-\left(x-3\right)\left(x^2+9\right)-6x^2+5\)
d) \(^{ }4x\left(2x+3\right)-8x\left(x+4\right)\)
e) \(^{ }2x\left(5x+2\right)+\left(2x-3\right)\left(3x-1\right)\)
f) \(^{ }x\left(x+2\right)^2-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
d: Ta có: \(4x\left(2x+3\right)-8x\left(x+4\right)\)
\(=8x^2+12x-8x^2-32x\)
=-20x
e: Ta có: \(2x\left(5x+2\right)+\left(2x-3\right)\left(3x-1\right)\)
\(=10x^2+4x+6x^2-2x-9x+3\)
\(=16x^2-7x+3\)
f: Ta có: \(x\left(x+2\right)^2-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(=x^3+4x^2+4x-x^3-3x^2-3x-1+3x^2-3\)
\(=4x^2+x-4\)