Phân tích đa thức thành nhân tử (phương pháp dùng hằng đẳng thức)
36(x-y)-25(2x-1)2
Phân tích đa thức thành nhân tử(phương pháp dùng hằng đẳng thức)
36(x-y)-25(2x-1)2
đề sai rùi phải là : \(36\left(x-y\right)^2-25\left(2x-1\right)^2\)
\(=>\left[6\left(x-y\right)\right]^2-\left[5\left(2x-1\right)\right]^2=\left[6\left(x-y\right)-5\left(2x-1\right)\right]\left[6\left(x-y\right)+5\left(2x-1\right)\right]\)
\(=>\left(6x-6y-10x+5\right)\left(6x-6y+10x-5\right)=\left(5-4x-6y\right)\left(16x-6y-5\right)\)
Áp dụng HDT : x^2 -y^2 =(x-y) (x+y)
Ủng hộ = 1 cái t i c k nha cảm ơn
Phân tích đa thức thành nhân tử bằng phương pháp hằng đẳng thức:
9(x-3y)^2-25(2x+y)^2
\(9\left(x-3y\right)^2-25\left(2x+y\right)^2\)
\(=\left[3\left(x-3y\right)\right]^2-\left[5\left(2x+y\right)\right]^2\)
\(=\left(3x-9y\right)^2-\left(10x+5y\right)^2\)
\(=\left[3x-9y+10x+5y\right]\left[3x-9y-\left(10x+5y\right)\right]\)
\(=\left(13x-4y\right)\left(-7x-14y\right)\)
\(=-7\left(x+2y\right)\left(13x-4y\right)\)
9(x - 3y)² - 25(2x + y)²
= 3².(x - 3y)² - 5².(2x + y)²
= (3x - 9y)² - (10x + 5y)²
= (3x - 9y - 10x - 5y)(3x - 9y + 10x + 5y)
= (-7x - 14y)(13x - 4y)
= -7(x + 2y)(13x - 4y)
Phân tích đa thức 10x - 25 - x2 thành nhân tử bằng phương pháp dùng hằng đẳng thức.
\(10x-25-x^2=-\left(x^2-10x+25\right)\)
\(=-\left(x^2-2.x.5+5^2\right)=-\left(x-5\right)^2\)
10x - 25 - x2
= x2- 10x - 25
= - ( x2 +10x +25)
= -(x2 + 2.x.5+52 )
= - (x+5 )2
bài 1:phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
bài 2:phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
mình cần gấp sos
Bài 2:
1) \(x^2-4x+4=\left(x-2\right)^2\)
2) \(x^2-9=x^2-3^2=\left(x-3\right)\left(x+3\right)\)
3) \(1-8x^3=\left(1-2x\right)\left(1+2x+4x^2\right)\)
4) \(\left(x-y\right)^2-9x^2=\left(x-y\right)^2-\left(3x\right)^2=\left(x-y-3x\right)\left(x-y+3x\right)=\left(-2x-y\right)\left(4x-y\right)\)
5) \(\dfrac{1}{25}x^2-64y^2=\left(\dfrac{1}{5}x-8y\right)\left(\dfrac{1}{5}x+8y\right)\)
6) \(8x^3-\dfrac{1}{8}=\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)
Bài 2:
7) \(x^3+\dfrac{1}{27}=\left(x+\dfrac{1}{3}\right)\left(x^2+\dfrac{1}{3}x+\dfrac{1}{9}\right)\)
8) \(x^3+64=\left(x+4\right)\left(x^2+4x+16\right)\)
9) \(\left(a+b\right)^2-\left(2a-b\right)^2=\left(a+b+2a-b\right)\left(a+b-2a+b\right)=3a\left(-a+2b\right)\)
10) \(\left(a+b\right)^2-\left(a-b\right)^2=\left(a+b+a-b\right)\left(a+b-a+b\right)=2a\cdot2b=4ab\)
11) \(\left(a+b\right)^3+\left(a-b\right)^3=\left(a+b+a-b\right)\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=2a\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)\)
\(=2a\left(3a^2+b^2\right)\)
12) \(\left(6x-1\right)^2-\left(3x+2\right)^2=\left(6x-1+3x+2\right)\left(6x-1-3x-2\right)=\left(9x+1\right)\left(3x-3\right)\)
1:
1: ,4x^2-6x=2x(2x-3)
2: 9x^3y^2+3x^2y^2=3x^2y^2(3x+1)
3: x^3+2x^2+3x=x(x^2+2x+3)
4: 2x^2-4x=2x(x-2)
5: 3x-6y=3(x-2y)
6: x^2-3x=x(x-3)
7: 6x^2y+4xy^2+2xy
=2xy(3x+2y+1)
8: 5x^2(x-2y)-15x(x-2y)
=(x-2y)(5x^2-15x)
=5x(x-3)(x-2y)
9: =3(x-y)+5y(x-y)
=(x-y)(5y+3)
10: =(x-1)(3x+5)
11: =2(2x-1)-3(2x-1)
=-(2x-1)
2.Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
a^3.y^3 + 125
8x^3,y^3 - 6xy.(2x - y)
(3x+ 2)^4 - 2.(x - 1).(3x + 2) + (x - 1)^2
a) Ta có: \(a^3y^3+125\)
\(=\left(ay+5\right)\left(a^2y^2-5ay+25\right)\)
b) Ta có: \(8x^3-y^3-6xy\cdot\left(2x-y\right)\)
\(=\left(2x-y\right)\left(4x^2+2xy+y^2\right)-6xy\left(2x-y\right)\)
\(=\left(2x-y\right)\left(4x^2+2xy-6xy+y^2\right)\)
\(=\left(2x-y\right)^3\)
Bài 1: Phân tích các đa thức sau thành nhân tử
HD: Dùng phương pháp đặt nhân tử chung phối hợp dùng hằng đẳng thức số 1, 2
1) x3 – 2x – x 2) 6x2 + 12xy + 6y2
3) 2y3 + 8y3 + 8y 4) 5x2 – 10xy + 5y2
Bài 2: Phân tích các đa thức sau thành nhân tử
HD: Dùng pp đặt nhân tử chung phối hợp dùng hằng đẳng thức số 3, 6, 7
1) x3 – 64x 2) 8x2y – 18y 3) 24x3 – 3
Bài 3: Phân tích các đa thức sau thành nhân tử
HD: Dùng phương pháp nhóm hạng tử phối hợp dùng hằng đẳng thức
1) 5x2 + 10x + 5 – 5y2 2) 3x3 – 6x2 + 3x – 12xy2
3) a3b – ab3 + a2 + 2ab + b2 4) 2x3 – 2xy2 – 8x2 + 8xy
Giup mik với mik cần gấp lắm!
Bài 1:
\(1,Sửa:x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\\ 2,=6\left(x^2+2xy+y^2\right)=6\left(x+y\right)^2\\ 3,=2y\left(y^2+4y+4\right)=2y\left(y+2\right)^2\\ 4,=5\left(x^2-2xy+y^2\right)=5\left(x-y\right)^2\)
Bài 2:
\(1,=x\left(x^2-64\right)=x\left(x-8\right)\left(x+8\right)\\ 2,=2y\left(4x^2-9\right)=2y\left(2x-3\right)\left(2x+3\right)\\ 3,=3\left(x^3-1\right)=3\left(x-1\right)\left(x^2+x+1\right)\)
Bài 3:
\(a,=5\left(x^2+2x+1-y^2\right)=5\left[\left(x+1\right)^2-y^2\right]=5\left(x-y+1\right)\left(x+y+1\right)\\ b,=3x\left(x^2-2x+1-4y^2\right)=3x\left[\left(x-1\right)^2-4y^2\right]\\ =3x\left(x-2y-1\right)\left(x+2y-1\right)\\ c,=ab\left(a-b\right)\left(a+b\right)+\left(a+b\right)^2\\ =\left(a+b\right)\left(a^2b-ab^2+a+b\right)\\ d,=2x\left(x^2-y^2-4x+4\right)=2x\left[\left(x-2\right)^2-y^2\right]\\ =2x\left(x-y-2\right)\left(x+y-2\right)\)
Bài 1;
1) \(x^3-2x-x=x\left(x^2-2x-1\right)\)
2) \(6x^2+12xy+6y^2=6\left(x^2+2xy+y^2\right)=6\left(x+y\right)^2\)
3) \(2y^3+8y^3+8y=10y^3+8y=2y\left(5y^2+4\right)\)
4) \(5x^2-10xy+5y^2=5\left(x^2-2xy+y^2\right)=5\left(x-y\right)^2\)
Bài 2:
1) \(x^3-64x=x\left(x^2-64\right)=x\left(x-8\right)\left(x+8\right)\)
2) \(8x^2y-18y=2y\left(4x^2-9\right)=2y\left(2x-3\right)\left(2x+3\right)\)
3) \(24x^3-3=3\left(8x^3-1\right)=3\left(2x-1\right)\left(4x^2+2x+1\right)\)
Bài 3:
1) \(5x^2+10x+5-5y^2=5\left(x^2+2x+1-y^2\right)=5\left[\left(x+1\right)^2-y\right]=5\left(x-y+1\right)\left(x+y+1\right)\)
2) \(3x^3-6x^2+3x-12xy^2=3x\left(x^2-2x+1-4y^2\right)=3x\left[\left(x-1\right)^2-\left(2y\right)^2\right]=3x\left(x-2y-1\right)\left(x+2y-1\right)\)
3) \(a^3b-ab^3+a^2+2ab+b^2=ab\left(a^2-b^2\right)+\left(a+b\right)^2=ab\left(a-b\right)\left(a+b\right)+\left(a+b\right)^2=\left(a+b\right)\left(a^2b-ab^2+a+b\right)\)
4) \(2x^3-2xy^2-8x^2+8xy=2x\left(x^2-y^2-4x+4y\right)=2x\left[\left(x-y\right)\left(x+y\right)-4\left(x-y\right)\right]=2x\left(x-y\right)\left(x+y-4\right)\)
phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
2x^2-7x+3
\(2x^2-7x+3\)
\(=2\left(x^2-\frac{7}{2}x+\frac{3}{2}\right)\)
Vậy thôi đâu cần dùng HĐT
2x2-7x+3
=2x2-x-6x+3
=x(2x-1)-3(2x-1)
=(x-3)(2x-1)
Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức:
Tìm x:
x2- 10x = -25
\(\Leftrightarrow x^2-10x+25=0\\ \Leftrightarrow\left(x-5\right)^2=0\\ \Leftrightarrow x=5\)
\(x^2-10x+25=0\)
\(x^2-10x+5^2=0\)
\(\left(x-5\right)^2=0\)
phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
9( 2x+3)^2 - 4(x+1)^2
4b^2c^2 - (b^2 +c^2-a^2y^2)