chứng minh:
\(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=8\)
Chứng minh các đẳng thức sau :
a) \(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=8\)
b) \(\left(\sqrt{2}-1\right)^2=\sqrt{9}-\sqrt{8}\)
a/ \(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=\sqrt{81-17}=\sqrt{64}=8\)
b/ \(\left(\sqrt{2}-1\right)^2=2-2\sqrt{2}+1=\sqrt{9}-\sqrt{8}\)
a) Bình phương vế trái, ta được:
\(\left(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}\right)^2\)
\(\Leftrightarrow\left(9-\sqrt{17}\right).\left(9+\sqrt{17}\right)\)
\(\Leftrightarrow81-17=64=8^2\)
\(\Rightarrow\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=8\left(đpcm\right)\)
b) Ta có: \(\left(\sqrt{2}-1\right)^2=\left(\sqrt{2}\right)^2-2\sqrt{2}+1=2-2\sqrt{2}+1=3-2\sqrt{2}=\sqrt{9}-\sqrt{8}\) (đpcm)
Chứng minh rằng:
a, \(\left(2-\sqrt{3}\right)\sqrt{7+4\sqrt{3}}=1\)
b, \(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=8\)
\(\left(2-\sqrt{3}\right)\sqrt{7+4\sqrt{3}}=\left(2-\sqrt{3}\right)\sqrt{2^2+2.2\sqrt{3}+3}=\left(2-\sqrt{3}\right)\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=4-3=1\)
\(\sqrt{9-\sqrt{17}}\sqrt{9+\sqrt{17}}=\sqrt{\left(9-\sqrt{17}\right)\left(9+\sqrt{17}\right)}\)
\(=\sqrt{81-17}=\sqrt{64}=8\)
Chứng minh :
a) \(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=8\)
b) \(2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)
a) \(VT=\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=\sqrt{\left(9-\sqrt{17}\right)\left(9+\sqrt{17}\right)}\)
=\(\sqrt{9^2-\left(\sqrt{17}\right)^2}=\sqrt{81-17}=\sqrt{64}=8=VP\)
b) \(VT=2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}\)
=\(2\sqrt{6}-4\sqrt{2}+1+4\sqrt{2}+8-2\sqrt{6}=9=VP\)
Chứng minh
a)\(\sqrt{9-\sqrt{17}}\cdot\sqrt{9+\sqrt{17}}=8\)
b)(\(\dfrac{1}{5-2\sqrt{6}}+\dfrac{2}{5+2\sqrt{6}}\)
a.
\(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}\\ =\sqrt{\left(9-\sqrt{17}\right)\left(9+\sqrt{17}\right)}\\ =\sqrt{81-17}\\ =\sqrt{64}\\=8\)
\(a.VT=\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=\sqrt{81-17}=8=VP\)
\(b.\dfrac{1}{5-2\sqrt{6}}+\dfrac{2}{5+2\sqrt{6}}=3\sqrt{3}-\sqrt{2}\) ( thiếu đề )
\(VT=\dfrac{1}{5-2\sqrt{6}}+\dfrac{2}{5+2\sqrt{6}}=\dfrac{1}{3-2\sqrt{3}.\sqrt{2}+2}+\dfrac{2}{3+2\sqrt{3}.\sqrt{2}+2}=\dfrac{1}{\sqrt{3}-\sqrt{2}}+\dfrac{2}{\sqrt{3}+\sqrt{2}}=\sqrt{3}+\sqrt{2}+2\sqrt{3}-2\sqrt{2}=3\sqrt{3}-\sqrt{2}=VP\)
Chứng Minh rằng
\(\sqrt{9-\sqrt{17}}\)* \(\sqrt{9+\sqrt{7}}\)=8
\(\sqrt{9-\sqrt[]{17}}+\sqrt{9+\sqrt{7}=8}\)
\(9-17+9+7=8\)
\(-8+16=8\)
Sửa đề: \(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=8\)
\(A=\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=\sqrt{81-17}=\sqrt{64}=8\)
Chứng minh:
a) \(\sqrt{9\sqrt{17}}\) . \(\sqrt{9+\sqrt{17}}\)=8
b) 2\(\sqrt{2}\) (\(\sqrt{3}\)-2)+(1+2\(\sqrt{2}\))\(^2\)-2\(\sqrt{6}\)=9
rút gọn K
K = \(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}-\sqrt{\left(-8\right)^2}\)
\(K=\sqrt{9-\sqrt{17}}\cdot\sqrt{9+\sqrt{17}}-\sqrt{\left(-8\right)^2}\)
\(=\sqrt{\left(9-\sqrt{17}\right)\left(9+\sqrt{17}\right)}-\sqrt{\left(-8\right)^2}\)
\(=\sqrt{81-17}-8=\sqrt{64}-8=8-8=0\)
Bài 1 : Rút gọn
a) \(\frac{\sqrt{6}+\sqrt{16}}{2\sqrt{3}+\sqrt{28}}\)
b) \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3+\sqrt{4}}}\)
Bài 2: Chứng minh
a)\(\sqrt{9-\sqrt{17}}-\sqrt{9+\sqrt{17}}=8\)
b)\(2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)
Bài 2:
a)
\(\sqrt{9-\sqrt{17}}-\sqrt{9+\sqrt{17}}=\sqrt{\frac{18-2\sqrt{17}}{2}}-\sqrt{\frac{18+2\sqrt{17}}{2}}\)
\(=\sqrt{\frac{17+1-2\sqrt{17}}{2}}-\sqrt{\frac{17+1+2\sqrt{17}}{2}}=\sqrt{\frac{(\sqrt{17}-1)^2}{2}}-\sqrt{\frac{(\sqrt{17}+1)^2}{2}}\)
\(=\frac{\sqrt{17}-1}{\sqrt{2}}-\frac{\sqrt{17}+1}{\sqrt{2}}=-\sqrt{2}\)
b)
\(2\sqrt{2}(\sqrt{3}-2)+(1+2\sqrt{2})^2-2\sqrt{6}\)
\(=2\sqrt{6}-4\sqrt{2}+(1+4\sqrt{2}+8)-2\sqrt{6}\)
\(=1+8=9\)
Bài 1:
a)
\(\frac{\sqrt{6}+\sqrt{16}}{2\sqrt{3}+\sqrt{28}}=\frac{\sqrt{6}+4}{2(\sqrt{3}+\sqrt{7})}=\frac{1}{2}.\frac{(\sqrt{6}+4)(\sqrt{7}-\sqrt{3})}{(\sqrt{3}+\sqrt{7})(\sqrt{7}-\sqrt{3})}\)
\(=\frac{(4+\sqrt{6})(\sqrt{7}-\sqrt{3})}{8}\)
b) \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{6}+\sqrt{8}+\sqrt{16}-\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{6}+\sqrt{8}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{(\sqrt{2}+\sqrt{3}+\sqrt{4})+\sqrt{2}(\sqrt{2}+\sqrt{3}+\sqrt{4})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{(\sqrt{2}+1)(\sqrt{2}+\sqrt{3}+\sqrt{4})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\sqrt{2}+1\)
CMR:
\(a)\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=8\\ b)2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)
a) Ta có: \(VT=\sqrt{9-\sqrt{17}}\cdot\sqrt{9+\sqrt{17}}\)
\(=\sqrt{\left(9-\sqrt{17}\right)\cdot\left(9+\sqrt{17}\right)}\)
\(=\sqrt{81-17}=\sqrt{64}=8\)=VP(đpcm)
b) Ta có: \(VT=2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}\)
\(=2\sqrt{6}-4\sqrt{2}+1+4\sqrt{2}+8-2\sqrt{6}\)
=9=VP(đpcm)