(Thanh Hóa)
Cho a, b, c là các số dương thỏa mãn: \(a^2+2b^2\le3c^2\) . Chứng minh rằng: \(\dfrac{1}{a}+\dfrac{2}{b}\ge\dfrac{3}{c}\).
Cho a, b, c là các số dương thỏa mãn: \(a^2+2b^2\le3c^2\). Chứng minh: \(\dfrac{1}{a}+\dfrac{2}{b}\ge\dfrac{3}{c}\)
Tham khảo: https://lazi.vn/edu/exercise/cho-a-b-c-la-cac-so-duong-thoa-man-a2-2b2-3c2-chung-minh-1-a-2-b-3-c
Cho a; b; c là các số thực dương thỏa mãn a^2 + b^2 + c^2 = 3
Chứng minh: \(\dfrac{2a^2}{a+b^2}+\dfrac{2b^2}{b+c^2}+\dfrac{2c^2}{c+a^2}\ge a+b+c\)
Ta có \(a+b^2\le\dfrac{a^2+1}{2}+b^2=\dfrac{a^2+2b^2+1}{2}\)
\(\Rightarrow\dfrac{2a^2}{a+b^2}\ge\dfrac{4a^2}{a^2+2b^2+1}=\dfrac{4a^4}{a^4+2b^2a^2+a^2}\). Lập 2 BĐT tương tự rồi áp dụng bất đẳng thức BCS, ta có:
\(\dfrac{2a^2}{a+b^2}+\dfrac{2b^2}{b+c^2}+\dfrac{2c^2}{c+a^2}\ge\dfrac{\left(2a^2+2b^2+2c^2\right)^2}{a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)+a^2+b^2+c^2}\) \(=\dfrac{4\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)^2+3}\)\(=\dfrac{4.3^2}{3^2+3}=3\).
Mà \(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\) nên ta có đpcm. ĐTXR \(\Leftrightarrow a=b=c=1\)
Cho a,b,c là các số thực dương thỏa mãn abc=1.Chứng minh rằng \(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\ge\dfrac{1}{2}\)
Đề bài sai
Đề đúng: \(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\le\dfrac{1}{2}\)
Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x^2;y^2;z^2\right)\Rightarrow xyz=1\)
Đặt vế trái BĐT cần chứng minh là P, ta có:
\(P=\dfrac{1}{x^2+2y^2+3}+\dfrac{1}{y^2+2z^2+3}+\dfrac{1}{z^2+2x^2+3}\)
\(P=\dfrac{1}{\left(x^2+y^2\right)+\left(y^2+1\right)+2}+\dfrac{1}{\left(y^2+z^2\right)+\left(z^2+1\right)+2}+\dfrac{1}{\left(z^2+x^2\right)+\left(x^2+1\right)+2}\)
\(P\le\dfrac{1}{2xy+2y+2}+\dfrac{1}{2yz+2z+2}+\dfrac{1}{2zx+2x+2}\)
\(P\le\dfrac{1}{2}\left(\dfrac{xz}{xz\left(xy+y+1\right)}+\dfrac{x}{x\left(yz+z+1\right)}+\dfrac{1}{zx+x+1}\right)\)
\(P\le\dfrac{1}{2}\left(\dfrac{xz}{x.xyz+xyz+xz}+\dfrac{x}{xyz+xz+1}+\dfrac{1}{xz+x+1}\right)\)
\(P\le\dfrac{1}{2}\left(\dfrac{xz}{x+1+xz}+\dfrac{x}{1+xz+1}+\dfrac{1}{xz+x+1}\right)=\dfrac{1}{2}\)
Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)
Cho 3 số thực dương a, b, c thỏa mãn: abc=1. Chứng minh rằng:
\(\dfrac{a^3}{a^2+2b^2}+\dfrac{b^3}{b^2+2c^2}+\dfrac{c^3}{c^2+2a^2}\ge1\)
Ta có: \(\dfrac{a^3}{a^2+2b^2}=a-\dfrac{2ab^2}{a^2+2b^2}\ge a-\dfrac{2ab^2}{3\sqrt[3]{a^2b^4}}=a-\dfrac{2}{3}\sqrt[3]{ab^2}\ge a-\dfrac{2}{9}\left(a+b+b\right)=a-\dfrac{2}{9}\left(a+2b\right)\) Chứng minh tương tự ta được:
\(\dfrac{b^3}{b^2+2c^2}\ge b-\dfrac{2}{9}\left(b+2c\right);\dfrac{c^3}{c^2+2a^2}\ge c-\dfrac{2}{9}\left(c+2a\right)\)
\(\Rightarrow\dfrac{a^3}{a^2+2b^2}+\dfrac{b^3}{b^2+2c^2}+\dfrac{c^3}{c^2+2a^2}\ge a+b+c-\dfrac{2}{9}\left(a+2b+b+2c+c+2a\right)=a+b+c-\dfrac{2}{9}\left(3a+3b+3c\right)=\dfrac{1}{3}\left(a+b+c\right)\ge\dfrac{1}{3}\cdot3\sqrt[3]{abc}=1\)Dấu = xảy ra \(\Leftrightarrow a=b=c=1\)
Chứng minh \(\dfrac{1}{2+a}+\dfrac{1}{2+b}+\dfrac{1}{2+c}\le1\)
10. Cho a, b, c là các số thực dương. Chứng minh rằng:\(\dfrac{a}{b}+\dfrac{b}{c}\ge\dfrac{4a}{a+c}\)
11.Cho các số thực dương a, b, c. Chứng minh rằng:
\(\dfrac{ab}{a+b+2c}+\dfrac{bc}{b+c+2a}+\dfrac{ca}{a+c+2b}\le\dfrac{1}{4}\left(a+b+c\right)\)
11/Theo BĐT AM-GM,ta có; \(ab.\frac{1}{\left(a+c\right)+\left(b+c\right)}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)\(=\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)
Tương tự với hai BĐT kia,cộng theo vế và rút gọn ta được đpcm.
Dấu "=" xảy ra khi a= b=c
Ơ vãi,em đánh thiếu abc dưới mẫu,cô xóa giùm em bài kia ạ!
9/ \(VT=\frac{\Sigma\left(a+2\right)\left(b+2\right)}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)
\(=\frac{ab+bc+ca+4\left(a+b+c\right)+12}{\left(ab+bc+ca\right)+4\left(a+b+c\right)+8+abc+\left(ab+bc+ca\right)}\)
\(\le\frac{ab+bc+ca+4\left(a+b+c\right)+12}{\left(ab+bc+ca\right)+4\left(a+b+c\right)+9+3\sqrt[3]{\left(abc\right)^2}}\)
\(=\frac{ab+bc+ca+4\left(a+b+c\right)+12}{ab+bc+ca+4\left(a+b+c\right)+12}=1\left(Q.E.D\right)\)
"=" <=> a = b = c = 1.
Mong là lần này không đánh thiếu (nãy tại cái tội đánh ẩu)
10/Thêm \(\frac{b}{a}-2\) ở mỗi vế ta cần chứng minh:
\(\frac{\left(a-b\right)^2}{ab}+\frac{b}{c}\ge\frac{4a}{a+c}+\frac{b}{a}-2\) (vận dùng đẳng thức \(\frac{a}{b}+\frac{b}{a}-2=\frac{a^2+b^2-2ab}{ab}=\frac{\left(a-b\right)^2}{ab}\))
\(\Leftrightarrow\frac{c\left(a-b\right)^2+ab^2}{abc}\ge\frac{4a^2+ab+bc-2a\left(a+c\right)}{a\left(a+c\right)}\)
\(\Leftrightarrow\frac{c\left(a-b\right)^2+ab^2}{abc}\ge\frac{2a^2+a\left(b-c\right)+c\left(b-a\right)}{a\left(a+c\right)}\)
\(\Leftrightarrow\frac{\left(c\left(a-b\right)^2+ab^2\right)\left(a+c\right)}{abc\left(a+c\right)}-\frac{\left(2a^2+a\left(b-c\right)+c\left(b-a\right)\right)bc}{abc\left(a+c\right)}\ge0\)
Em làm tắt tiếp:v
\(\Leftrightarrow\frac{a\left(ac^2+b^2c+ca^2+ab^2-4abc\right)}{abc\left(a+c\right)}\ge0\)\(\Leftrightarrow\frac{\left(ac^2+b^2c+ca^2+ab^2-4abc\right)}{bc\left(a+c\right)}\ge0\)
Áp dụng BĐT AM-GM ta được: \(VT\ge\frac{4\sqrt[4]{\left(abc\right)^4}-4abc}{bc\left(a+c\right)}=\frac{0}{bc\left(a+c\right)}=0\)
Ta có Q.E.D.
P/s: Đúng không ta? Mà sao có người tk sai nhỉ?
Cho các số thực dương a, b, c thỏa mãn a + b + c = 3. Chứng minh rằng: \(\sqrt{2a^2+\dfrac{7}{b^2}}+\sqrt{2b^2+\dfrac{7}{c^2}}+\sqrt{2c^2+\dfrac{7}{a^2}}\ge9\)
Cho a,b,c là các số dương, chứng minh rằng
\(\dfrac{2a^2}{2b+c}+\dfrac{2b^2}{2a+c}+\dfrac{c^2}{4a+4b}\ge\dfrac{1}{4}\left(2a+2b+c\right)\)
\(P=\dfrac{4a^2}{4b+2c}+\dfrac{4b^2}{4a+2c}+\dfrac{c^2}{4a+4b}\ge\dfrac{\left(2a+2b+c\right)^2}{8a+8b+4c}\)
\(=\dfrac{\left(2a+2b+c\right)^2}{4\left(2a+2b+c\right)}=\dfrac{1}{4}\left(2a+2b+c\right)\)
Cho a,b,c là các số dương thỏa mãn \(a^2+2b^2\le3c^2\)Chứng minh \(\frac{1}{a}+\frac{2}{b}\ge\frac{3}{c}\)
Cho a, b, c là các số dương thỏa mãn:\(a^2+2b^2\le3c^2\). Chứng minh:
\(\frac{1}{a}+\frac{2}{b}\ge\frac{3}{c}\)
Đặt \(b=xa;c=ya\Rightarrow a^2+2x^2a^2\le3y^2a^2\Leftrightarrow1+2x^2\le3y^2\)
Ta cần chứng minh:\(\frac{1}{a}+\frac{2}{xa}\ge\frac{3}{ya}\Leftrightarrow1+\frac{2}{x}\ge\frac{3}{y}\)
Vậy ta viết được bài toán thành dạng đơn giản hơn:
Cho x, y > 0 thỏa mãn \(1+2x^2\le3y^2\). Chứng minh:\(1+\frac{2}{x}\ge\frac{3}{y}\)
Tối về em suy nghĩ tiếp ạ!
Ta co:
\(3c^2\ge a^2+b^2+b^2\ge\frac{\left(a+2b\right)^2}{3}\Rightarrow a+2b\le3c\)
\(\Rightarrow VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\)
Dau '=' xay ra khi \(a=b=c=1\)
1. Giải phương trình $\sqrt2.\sqrt{2x^2 + x + 1} - \sqrt{4x-1} + 2x^2+3x-3 = 0$.
2. Cho các số thực dương $a, b, c$ thỏa mãn $ab+bc+ca = 3.$ Chứng minh
$\dfrac{a^3}{b+2c} + \dfrac{b^3}{c+2a} + \dfrac{c^3}{a+2b} \ge 1.$
b, \(\frac{a^3}{b+2c}+\frac{b^3}{c+2a}+\frac{c^3}{a+2b}\ge1\)
\(\frac{a^4}{ab+2ac}+\frac{b^4}{bc+2ab}+\frac{c^4}{ac+2bc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac+2ac+2ab+2bc}\)( Bunhia dạng phân thức )
mà \(a^2+b^2+c^2\ge ab+bc+ac\)
\(=\frac{\left(ab+bc+ac\right)^2}{3+2\left(ab+ac+bc\right)}=\frac{9}{3+6}=1\)( đpcm )
1.
Điều kiện .
Phương trình tương đương với \\
Với ta có:
.
Suy ra .
Vậy phương trình có nghiệm duy nhất
2.
Đặt
Áp dụng bất đẳng thức Cauchy cho hai số dương và ta có
.
Tương tự , .
Cộng các vế ta có .
Mà nên (ta có đpcm).
1.
√2 × √(2x2+x+1) + √(4x-1) + 3x-3=0
⇌[√(4x2+2x+2)-2] - [√(4x-1) -1] + (2x2+3x-2)=0
⇌(4x2+2x-2)/[√(4x2+2x+2)+2] - (4x-2)/[√(4x-1)+1] + (2x-1)(x+2) =0
⇔(2x-1) × [(2x+2)/√(4x2+2x+2+2) - 2/(√4x-1)+1+x+2]=0
Với x≥1/4 thì (2x+2)/(√4x2+2x+2+2)≥0 hoặc x+2>2 hoặc (√4x-1)+1≥1 ⇌ 2/[(√4x-1)+1]≤2
⇒(2x+2)/[(√4x2+2x+2)+2] - 2/[(x-1)+1]+x+2>0-2+2=0
⇌ 2x-1=0⇒x=1/2
Vậy x=1/2
2.
Áp dụng bất đẳng thức ta có :
Vế trái = a4/(ab +2ac) + b4/(bc+2ab) + c4/(ac+2bc)≥[(a2 + b2 +c2)2]/[3(ab+bc+ca) =[(a2+b2+c2)2]/9
Ấp dụng bất đẳng thức ta có :
ab+bc+ca≤a2+b2+c2
Vế trái ≥ [(a2+b2+c2)]/9≥32/9 =1
⇒ Vế trái ≥1 (đpcm)
Dấu = xảy ra khi a=b=c=1