Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hà ngọc ánh
Xem chi tiết
Hoàng Thanh Tuấn
2 tháng 6 2017 lúc 21:27

ĐK \(16-x^2>0\Leftrightarrow\left(4-x\right)\left(4+x\right)\Leftrightarrow-4< x< 4\)

Đặt \(t=\sqrt{16-x^2}\Rightarrow t^2=16-x^2\)phương trình trở thành: 

\(\frac{x^3}{t}-t^2=0\Leftrightarrow x^3-t^3=0\Leftrightarrow x=t\)

\(\Leftrightarrow x=\sqrt{16-x^2}\Leftrightarrow\hept{\begin{cases}x>0\\x^2=16-x^2\end{cases}\Leftrightarrow\hept{\begin{cases}x>0\\x^2=8\end{cases}\Leftrightarrow}}x=2\sqrt{2}\)TMDK

Bao Gia
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 10 2021 lúc 21:10

\(\Leftrightarrow\sqrt{x+4}\left(\sqrt{x-4}-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-4=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=13\end{matrix}\right.\)

Lấp La Lấp Lánh
31 tháng 10 2021 lúc 21:11

ĐKXĐ: \(\left[{}\begin{matrix}x\ge4\\x=-4\end{matrix}\right.\)

\(pt\Leftrightarrow\sqrt{\left(x-4\right)\left(x+4\right)}-3\sqrt{x+4}=0\)

\(\Leftrightarrow\sqrt{x+4}.\left(\sqrt{x-4}-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+4}=0\\\sqrt{x-4}=3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-4=9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-4\left(tm\right)\\x=13\left(tm\right)\end{matrix}\right.\)

ILoveMath
31 tháng 10 2021 lúc 21:11

ĐKXĐ: \(\left[{}\begin{matrix}x\ge4\\x=-4\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{\left(x-4\right)\left(x+4\right)}=3\sqrt{\left(x+4\right)}\\ \Leftrightarrow\left(x-4\right)\left(x+4\right)=9\left(x+4\right)\\ \Leftrightarrow\left(x+4\right)\left(x-13\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-4\left(tm\right)\\x=13\left(tm\right)\end{matrix}\right.\)

Nguyễn Duy Khang
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 7 2023 lúc 21:38

a: =>\(x\cdot\left(\sqrt{3}-1\right)=16\)

=>\(x=\dfrac{16}{\sqrt{3}-1}=8\left(\sqrt{3}+1\right)\)

b: =>(x-căn 15)^2=0

=>x-căn 15=0

=>x=căn 15

Nguyễn Đức
Xem chi tiết
Mạch Trần Quang Nhật
Xem chi tiết
Nguyễn Mai Quỳnh Anh
Xem chi tiết
Tâm3011
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 6 2023 lúc 20:30

2:

\(A=\dfrac{x_2-1+x_1-1}{x_1x_2-\left(x_1+x_2\right)+1}\)

\(=\dfrac{3-2}{-7-3+1}=\dfrac{1}{-9}=\dfrac{-1}{9}\)

B=(x1+x2)^2-2x1x2

=3^2-2*(-7)

=9+14=23

C=căn (x1+x2)^2-4x1x2

=căn 3^2-4*(-7)=căn 9+28=căn 27

D=(x1^2+x2^2)^2-2(x1x2)^2

=23^2-2*(-7)^2

=23^2-2*49=431

D=9x1x2+3(x1^2+x2^2)+x1x2

=10x1x2+3*23

=69+10*(-7)=-1

Nguyễn Khắc Tùng Lâm
Xem chi tiết
Trần Minh Hoàng
15 tháng 1 2021 lúc 12:02

BĐT cần chứng minh tương đương:

\(\left(\sqrt{x^2+16}-5\right)-\left(\sqrt{x^2+7}-4\right)=x-3\)

\(\Leftrightarrow\dfrac{x^2-9}{\sqrt{x^2+16}+5}-\dfrac{x^2-9}{\sqrt{x^2+7}+4}=x-3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\Leftrightarrow x=3\\\left(x+3\right)\left(\dfrac{1}{\sqrt{x^2+16}+5}-\dfrac{1}{\sqrt{x^2+7}+4}\right)=1\left(1\right)\end{matrix}\right.\).

Mặt khác từ pt ban đầu suy ra x - 2 > 0, do đó x > 2.

Do đó vế trái của (1) bé hơn 0.

Suy ra 91) vô nghiệm.

Vậy nghiệm của pt đã cho là x = 3.

 

Trần Minh Hoàng
15 tháng 1 2021 lúc 12:09

Cách khác: Từ pt đã cho ta thấy x > 2.

PT \(\Leftrightarrow\dfrac{9}{\sqrt{x^2+16}+\sqrt{x^2+7}}=x-2\).

Với x > 3 thì VT < 1; VP > 1.

Với x < 3 thì VT > 1; VP < 1.

Với x = 3 ta thấy thoả mãn.

Vậy nghiệm của pt đã cho là x = 3.

Tuhuyenn
Xem chi tiết
Trúc Giang
16 tháng 9 2021 lúc 9:01

a) \(3x-2\sqrt{x-1}=4\) (ĐK: x ≥ 1)

\(\Rightarrow3x-2\sqrt{x-1}-4=0\)

\(\Rightarrow3x-6-2\sqrt{x-1}+2=0\)

\(\Rightarrow3\left(x-2\right)-2\left(\sqrt{x-1}-1\right)=0\)

\(\Rightarrow3\left(x-2\right)-2.\dfrac{x-2}{\sqrt{x-1}+1}=0\)

\(\Rightarrow\left(x-2\right)\left[3-\dfrac{2}{\sqrt{x-1}+1}\right]=0\)

*TH1: x = 2 (t/m)

*TH2: \(3-\dfrac{2}{\sqrt{x-1}+1}=0\)

\(\Rightarrow3=\dfrac{2}{\sqrt{x-1}+1}\)

\(\Rightarrow3\sqrt{x-1}+3=2\)

\(\Rightarrow3\sqrt{x-1}=-1\) (vô lí)

Vậy S = {2}

b) \(\sqrt{4x+1}-\sqrt{x+2}=\sqrt{3-x}\) (ĐK: \(-\dfrac{1}{4}\le x\le3\) )

\(\Rightarrow\sqrt{4x+1}-3-\sqrt{x+2}+2-\sqrt{3-x}+1=0\)

\(\Rightarrow\dfrac{4x-8}{\sqrt{4x+1}+3}-\dfrac{x-2}{\sqrt{x+2}+2}+\dfrac{x-2}{\sqrt{3-x}+1}=0\)

\(\Rightarrow\left(x-2\right)\left(\dfrac{4}{\sqrt{4x+1}+3}-\dfrac{1}{\sqrt{x+2}+2}+\dfrac{1}{\sqrt{3-x}+1}\right)=0\)

=> x = 2

 

 

 

Nguyễn Hoàng Minh
16 tháng 9 2021 lúc 9:03

\(a,3x-2\sqrt{x-1}=4\left(x\ge1\right)\\ \Leftrightarrow-2\sqrt{x-1}=4-3x\\ \Leftrightarrow4\left(x-1\right)=16-24x+9x^2\\ \Leftrightarrow9x^2-28x+20=0\\ \Leftrightarrow\left(x-2\right)\left(9x-10\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=\dfrac{10}{9}\left(tm\right)\end{matrix}\right.\)

\(b,\sqrt{4x+1}-\sqrt{x+2}=\sqrt{3-x}\left(-\dfrac{1}{4}\le x\le3\right)\\ \Leftrightarrow4x+1+x+2-2\sqrt{\left(4x+1\right)\left(x+2\right)}=3-x\\ \Leftrightarrow-2\sqrt{\left(4x+1\right)\left(x+2\right)}=2-6x\\ \Leftrightarrow\sqrt{4x^2+9x+2}=3x-1\\ \Leftrightarrow4x^2+9x+2=9x^2-6x+1\\ \Leftrightarrow5x^2-15x-1=0\\ \Leftrightarrow\Delta=225+20=245\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{15-\sqrt{245}}{10}=\dfrac{15-7\sqrt{5}}{10}\left(ktm\right)\\x=\dfrac{15+\sqrt{245}}{10}=\dfrac{15+7\sqrt{5}}{10}\left(tm\right)\end{matrix}\right.\Leftrightarrow x=\dfrac{15+7\sqrt{5}}{10}\)