Tìm Min của M=4X2 - 3x+1/4x +2013 với x >0
Tìm x
a) 4x(x+1)-x-1 = 0
b) x3-4x2+4x =0
c) x2-3x + 2 =0
tham khảo: https://hoc24.vn/cau-hoi/.2256230161739
a) ⇔ \(4x^2+4x-x-1=0\)
⇔ \(4x^2+3x-1=0\)
⇔ \(4x(x+1)-(x+1)=0\)
⇔ \((x+1)(4x-1)=0\)
⇒ \(\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy...
b) \(x^3-4x^2+4x=0\)
⇔ \(x^2(x-2)-2x(x-2)=0\)
⇔ \((x-2)(x^2-2x)=0\)
⇒ \(\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
Vậy...
c) \(x^2-3x+2=0\)
⇔ \(x(x-2)-(x-2)=0\)
⇔ \((x-1)(x-2)=0\)
⇒ \(\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy...
Với x >0, tìm Min của biểu thức: \(M=4x^2-3x+\dfrac{1}{4x}+2011\)
\(M=4x^2-3x+\dfrac{1}{4x}+2011\)
\(M=4x^2-4x+1+x+\dfrac{1}{4x}+2011\)
\(M=\left(2x-1\right)^2+\left(x+\dfrac{1}{4x}\right)+2010\)
Vì \(\left(2x-1\right)^2\ge0\) và \(x>0\)
\(\Rightarrow\dfrac{1}{4x}>0\)
Lợi dụng BĐT Cauchy cho 2 số nguyên dương ta có:
\(x+\dfrac{1}{4x}\ge2\sqrt{x\dfrac{1}{4x}}=2.\dfrac{1}{2}=1\)
\(\Rightarrow M=\left(2x-1\right)^2+\left(x+\dfrac{1}{4x}\right)+2010\ge0+1+2010=2011\)
\(\Rightarrow M\ge2011\)
Dấu " = " xảy ra khi:
\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\x=\dfrac{1}{4x}\\x>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\x^2=\dfrac{1}{4}\\x>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\\x>0\end{matrix}\right.\Leftrightarrow x=\dfrac{1}{2}\)
Vậy \(M_{min}=2011\) đạt được khi \(x=\dfrac{1}{2}\)
x(1+4x)-(4x2-3x+1)
Tìm nghiệm của đa thức giúp mình với ạ
Tìm Min
a) x2 + 6x + 10
b) 4x2 -4x + 5
c) x2 - 3x + 1
đg cần rất gấp siêu gấp lun
`#3107.101107`
a)
`x^2 + 6x + 10`
`= (x^2 + 2*x*3 + 3^2) + 1`
`= (x + 3)^2 + 1`
Vì `(x + 3)^2 \ge 0` `AA` `x`
`=> (x + 3)^2 + 1 \ge 1` `AA` `x`
Vậy, GTNN của bt là 1 khi `(x + 3)^2 = 0`
`<=> x + 3 = 0`
`<=> x = -3`
b)
`4x^2 - 4x + 5`
`= [(2x)^2 - 2*2x*1 + 1^2] + 4`
`= (2x - 1)^2 + 4`
Vì `(2x - 1)^2 \ge 0` `AA` `x`
`=> (2x - 1)^2 + 4 \ge 4` `AA` `x`
Vậy, GTNN của bt là `4` khi `(2x - 1)^2 = 0`
`<=> 2x - 1 = 0`
`<=> 2x = 1`
`<=> x = 1/2`
c)
`x^2 - 3x + 1`
`= (x^2 - 2*x*3/2 + 9/4) - 5/4`
`= (x - 3/2)^2 - 5/4`
Vì `(x - 3/2)^2 \ge 0` `AA` `x`
`=> (x - 3/2)^2 - 5/4 \ge -5/4` `AA` `x`
Vậy, GTNN của bt là `-5/4` khi `(x - 3/2)^2 = 0`
`<=> x - 3/2 = 0`
`<=> x = 3/2`
Tìm x biết:
a) (3x + 5)2 - 4x2 = 0
b) 25x4 - (4x - 3)2 = 0
c) (3x + 7)2 - (2x - 3)2 = 0
d) (4x - 1)2 - (5 - 3x)2 = 0
a: Ta có: \(\left(3x+5\right)^2-4x^2=0\)
\(\Leftrightarrow\left(3x+5+2x\right)\left(3x+5-2x\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-5\end{matrix}\right.\)
với x>6 tìm min của M=\(4x^2-3x+\frac{1}{4x}+2011\)
với x>0 tìm min
\(M=4x^2-3x+\dfrac{1}{4x}+2011\)
Áp dụng BĐT Cauchy ta có:
\(M=4x^2-3x+\dfrac{1}{4x}+2011\)
\(=\left(4x^2-4x+1\right)+\left(x+\dfrac{1}{4x}\right)+2010\)
= \(\left(2x-1\right)^2+\left(x+\dfrac{1}{4x}\right)+2010\)
\(\ge0+2\sqrt{x.\dfrac{1}{4x}}+2010\) = \(1+2010=2011\)
=> Dấu = xảy ra <=> \(2x=1\) => \(x=\dfrac{1}{2}\)
Vậy ........................................
Câu 4: Tìm nghiệm của đa thức:
A(x)= 1/3x+1
B(x)= -3/4x+1/3
C(x)= (2x-4)(x+1)
D(x)= -4x2+8x
giúp mình với mình cần gấp:<
Ta có \(A\left(x\right)=\dfrac{1}{3}x+1=0\Leftrightarrow x=-1:\dfrac{1}{3}=-3\)
\(B\left(x\right)=-\dfrac{3}{4}x+\dfrac{1}{3}\Leftrightarrow x=-\dfrac{1}{3}\left(-\dfrac{3}{4}\right)=4\)
\(C=\left(2x-4\right)\left(x+1\right)=0\Leftrightarrow x=2;x=-1\)
\(D\left(x\right)-4x\left(x-2\right)=0\Leftrightarrow x=0;x=2\)
Rút gọn biểu thức:
a) M = 1 x + 2 + 2 x − 2 − 2 x x 2 − 4 , với x ≠ ± 2 ;
b) N = x 2 + 5 x + 6 x 2 + x − 12 : x 2 + 4 x + 4 x 2 − 3 x , với x ≠ 0 ; − 4 ; 2 ; 3 .
a) MTC = (x -2)(x + 2). Ta rút gọn được M = 1 x − 2
b) Gợi ý: x 2 + 5 x + 6 = ( x + 2 ) ( x + 3 ) ; x 2 + x − 12 = ( x − 3 ) ( x + 4 )
Ta có N = ( x + 2 ) ( x + 3 ) ( x − 3 ) ( x + 4 ) : ( x + 2 ) 2 x ( x − 3 ) = x ( x + 3 ) ( x + 2 ) ( x + 4 )