Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đức Đạt Đỗ (Đạt 301 Chan...
Xem chi tiết
Diệu Huyền
28 tháng 12 2019 lúc 15:25

\(B=\frac{x^2-6x+14}{x^2-6x+12}\)

\(B=\frac{x^2-6x+12+2}{x^2-6x+12}\)

\(B=1+\frac{2}{\left(x-3\right)^2+3}\le1+\frac{2}{3}\)

\(B=1+\frac{2}{\left(x-3\right)^2+3}\le\frac{5}{3}\)

Dấu " = " xảy ra \(\Leftrightarrow x=3\)

Khách vãng lai đã xóa
Thạch Ngọc Trúc Ly
28 tháng 12 2019 lúc 15:30

B=\(\frac{x^2-6x+14}{x^2-6x+12}\)

=\(\frac{x^2-6x+9+3+2}{x^2-6x+9+3}\)

=\(\frac{\left(x^2-6x+9\right)+3+2}{\left(x^2-6x+9\right)+3}\)

=\(\frac{\left(x-3\right)^2+3+2}{\left(x-3\right)^2+3}\)

=\(\frac{\left(x-3\right)^2+3}{\left(x-3\right)^2+3}+\frac{2}{\left(x-3\right)^2+3}\)

=1+\(\frac{2}{\left(x-3\right)^2+3}\)

*Ta có:(x-3)2 \(\ge\) 0;với mọi x;cộng 3 vào 2 vế

\(\Rightarrow\)(x-3)2+3 \(\ge\) 0+3;với mọi x

\(\Rightarrow\)(x-3)2+3 \(\ge\) 3;với mọi x

\(\Rightarrow\)\(\frac{2}{\left(x-3\right)^2+3}\) \(\ge\) 0;với mọi x;lấy hai vế cộng cho1

\(\Rightarrow\)\(1+\frac{2}{\left(x-3\right)^2+3}\)\(\ge\)1+0;với mọi x

Vậy .................................

Khách vãng lai đã xóa
lan hương
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 6 2019 lúc 19:36

\(B=\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\Rightarrow B_{max}=\frac{3}{4}\) khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\)

2/ Xem lại đề bài, đề bài này thì ko có max, 12 ở mẫu là dấu + thì may ra làm được

Lan Hương
Xem chi tiết
Phạm Hoàng Hải Anh
24 tháng 6 2019 lúc 20:22

1, B=\(\frac{3}{4x^2-4x+5}\)

=\(\frac{3}{\left(4x^2-2.2x+4\right)+5-4}\)

=\(\frac{3}{\left(2x-2\right)^2+1}\le\frac{3}{1}=3\)

Để B=3 thì : (2x-2)2=0

\(\Leftrightarrow2x-2=0\)

\(\Leftrightarrow x=1\)

Vậy Max B =3 \(\Leftrightarrow x=1\)

๖ACE✪Şнαdσωッ
Xem chi tiết
๖ACE✪Şнαdσωッ
17 tháng 3 2020 lúc 16:47

Rút gọn nha các cậu

Khách vãng lai đã xóa
Đ𝒂𝒏 𝑫𝒊ệ𝒑
17 tháng 3 2020 lúc 17:04

\(A=\left(\frac{6x+1}{x^2-6x}+\frac{6x-1}{x^2+6x}\right)\times\frac{x^2-36}{12x^2+12}\)

\(A=\left[\frac{6x+1}{x\left(x-6\right)}+\frac{6x-1}{x\left(x+6\right)}\right]\times\frac{\left(x+6\right)\left(x-6\right)}{12\left(x^2+1\right)}\)

\(A=\frac{6x^2+36x+x+6+6x^2-36x-x+6}{x}\times\frac{1}{12\left(x^2+1\right)}\)

\(A=\frac{12\left(x^2+1\right)}{x}\times\frac{1}{12\left(x^2+1\right)}=\frac{1}{x}\)

Khách vãng lai đã xóa
Vinh Lê Thành
Xem chi tiết
Nguyệt
5 tháng 12 2018 lúc 22:40

\(B=\frac{x^2-6x+14}{x^2-6x+12}=\frac{x^2-6x+12+2}{x^2-6x+12}=1+\frac{2}{x^2-6x+12}\)

ta có: \(x^2-6x+12=x^2-2.3.x+3^2+4=\left(x-3\right)^2+4\ge4\)

để Bmax => \(\left(\frac{2}{x^2-6x+12}\right)max\Rightarrow x^2-6x+12min\)và lớn hơn 0 vì 2>0

\(\left(x-3\right)^2+4\) \(\ge\)4

dấu = xảy ra khi x-3=0

=> x=3

Vậy \(MaxB=\frac{3}{2}\)khi x=3

Mạc Hy
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 2 2020 lúc 10:27

Ta có: \(x^2-6x-2+\frac{14}{x^2-6x+7}=0\)

\(\Leftrightarrow\frac{\left(x^2-6x-2\right)\left(x^2-6x+7\right)+14}{x^2-6x+7}=0\)

\(\Leftrightarrow x^4-12x^3+41x^2-30x-14+14=0\)

\(\Leftrightarrow x^4-12x^3+41x^2-30x=0\)

Khách vãng lai đã xóa
Nguyễn Ngọc Lộc
20 tháng 2 2020 lúc 10:37

ĐKXĐ : \(x^2-6x+7\ne0\)

=> \(x^2-6x+9-2\ne0\)

=> \(\left(x-3\right)^2\ne2\)

=> \(\left[{}\begin{matrix}x-3\ne-\sqrt{2}\\x-3\ne\sqrt{2}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x\ne3-\sqrt{2}\\x\ne3+\sqrt{2}\end{matrix}\right.\)

- Ta có : \(x^2-6x-2+\frac{14}{x^2-6x+7}=0\)

Đặt : \(a=x^2-6x+7\)

=> \(a-9=x^2-6x-2\)

- Thay \(a-9=x^2-6x-2\), \(a=x^2-6x+7\) vào phương trình ta được : \(a-9+\frac{14}{a}=0\)

=> \(\frac{a^2}{a}-\frac{9a}{a}+\frac{14}{a}=0\)

=> \(a^2-9a+14=0\)

=> \(a^2-7a-2a+14=0\)

=> \(a\left(a-2\right)-7\left(a-2\right)=0\)

=> \(\left[{}\begin{matrix}a-7=0\\a-2=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}a=7\\a=2\end{matrix}\right.\)

- Thay \(a=x^2-6x+7\) vào phương trình trên ta được :

\(\left[{}\begin{matrix}x^2-6x+7=7\\x^2-6x+7=2\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x^2-6x=0\\x^2-6x=5\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x\left(x-6\right)=0\\x^2-5x-x-5=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x\left(x-6\right)=0\\x\left(x-1\right)-5\left(x-1\right)=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x\left(x-6\right)=0\\\left(x-1\right)\left(x-5\right)=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=0\\x-6=0\\x-5=0\\x-1=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=0\\x=6\\x=5\\x=1\end{matrix}\right.\) ( TM )

Vậy phương trình có nghiệm là x = 0, x = 6, x = 5, x = 1 .

Khách vãng lai đã xóa
Lò Phạm Phương Linh
Xem chi tiết
Trần Thanh Phương
27 tháng 6 2019 lúc 10:51

\(A=-2x^2+5x-8\)

\(A=-2\left(x^2-\frac{5}{2}\cdot x+4\right)\)

\(A=-2\left(x^2-2\cdot x\cdot\frac{5}{4}+\frac{25}{16}+\frac{39}{16}\right)\)

\(A=-2\left[\left(x-\frac{5}{4}\right)^2+\frac{39}{16}\right]\)

\(A=-2\left(x-\frac{5}{4}\right)^2-\frac{39}{6}\le\frac{-39}{6}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{5}{4}\)

\(B=-x^2-y^2+xy+2x+2y\)

\(2B=-2x^2-2y^2+2xy-4x-4y\)

\(2B=-\left(2x^2+2y^2-2xy+4x+4y\right)\)

\(2B=-\left(x^2-2xy+y^2+x^2+4x+4+y^2+4y+4-8\right)\)

\(2B=-\left[\left(x-y\right)^2+\left(x+2\right)^2+\left(y+2\right)^2-8\right]\)

\(B=-\frac{\left(x-y\right)^2+\left(x+2\right)^2+\left(y+2\right)^2}{2}+4\le4\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=-2\)

\(C=\frac{3}{4x^2-4x+5}=\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2}\)

\(D=\frac{x^2-6x+14}{x^2-6x+12}=\frac{x^2-6x+12+2}{x^2-6x+12}\)

\(=1+\frac{2}{\left(x-3\right)^2+3}\le1+\frac{2}{3}=\frac{5}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow x=3\)

Nguyễn Châu Mỹ Linh
Xem chi tiết
Akai Haruma
26 tháng 5 2020 lúc 18:34

a) ĐKXĐ: $x\neq 1$

PT \(\Leftrightarrow \frac{x^2+x+1+2(x-1)}{(x-1)(x^2+x+1)}=\frac{3x^2}{x^3-1}\)

\(\Leftrightarrow \frac{x^2+3x-1}{x^3-1}=\frac{3x^2}{x^3-1}\)

\(\Rightarrow x^2+3x-1=3x^2\Leftrightarrow 2x^2-3x+1=0\)

\(\Leftrightarrow (x-1)(2x-1)=0\)

Mà $x\neq 1$ nên $2x-1=0\Rightarrow x=\frac{1}{2}$ là nghiệm

b) ĐK: $x\neq \pm 2$

PT \(\Leftrightarrow \frac{3-x}{2-x}=\frac{1}{x+2}-\frac{6-x}{3x^2-12}\)

\(\Leftrightarrow \frac{1}{x+2}-\frac{3-x}{2-x}=\frac{6-x}{3(x^2-4)}\)

\(\Leftrightarrow \frac{1}{x+2}+\frac{3-x}{x-2}=\frac{6-x}{3(x-2)(x+2)}\)

\(\Leftrightarrow \frac{-x^2+2x+4}{(x-2)(x+2)}=\frac{6-x}{3(x-2)(x+2)}\)

\(\Rightarrow 3(-x^2+2x+4)=6-x\)

\(\Leftrightarrow -3x^2+7x+6=0\)

\(\Leftrightarrow (x-3)(3x+2)=0\Rightarrow x=3\) hoặc $x=-\frac{2}{3}$

Vậy........

Akai Haruma
26 tháng 5 2020 lúc 18:49

c) ĐK: $x\neq \pm 2$

PT \(\Leftrightarrow \frac{x-2}{x+2}-\frac{3}{x-2}=\frac{2(x-11)}{x^2-4}\)

\(\Leftrightarrow \frac{(x-2)^2-3(x+2)}{(x+2)(x-2)}=\frac{2(x-11)}{(x-2)(x+2)}\)

\(\Leftrightarrow \frac{x^2-7x-2}{(x-2)(x+2)}=\frac{2x-22}{(x-2)(x+2)}\)

\(\Rightarrow x^2-7x-2=2x-22\)

\(\Leftrightarrow x^2-9x+20=0\Leftrightarrow (x-4)(x-5)=0\Rightarrow x=4\) hoặc $x=5$

(đều thỏa mãn)

d) ĐK: \(x^2-6x+7\neq 0\)

PT \(\Leftrightarrow (x^2-6x+7)+\frac{14}{x^2-6x+7}-9=0\)

\(\Rightarrow (x^2-6x+7)^2-9(x^2-6x+7)+14=0\)

\(\Leftrightarrow (x^2-6x+7-2)(x^2-6x+7-7)=0\)

\(\Leftrightarrow (x^2-6x+5)(x^2-6x)=0\)

\(\Leftrightarrow (x-1)(x-5)x(x-6)=0\)

\(\Rightarrow x\in \left\{1;5;0;6\right\}\) (đều thỏa mãn)

Vậy.........

Minh Tuấn
Xem chi tiết
Ngoc Anhh
12 tháng 8 2020 lúc 9:55

\(=\frac{x-12}{6\left(x-6\right)}-\frac{6}{x\left(x-6\right)}\)

\(=\frac{x^2-12x-36}{6x\left(x-6\right)}\)

\(=\frac{\left(x-6-6\sqrt{2}\right)\left(x-6+6\sqrt{2}\right)}{6x\left(x-6\right)}\)

Khách vãng lai đã xóa
ミ★Ƙαї★彡
12 tháng 8 2020 lúc 13:12

\(\frac{x-12}{6x-36}-\frac{6}{x^2-6x}=\frac{\left(x-12\right)\left(x^2-6x\right)}{\left(6x-36\right)\left(x^2-6x\right)}-\frac{6\left(6x-36\right)}{\left(x^2-6x\right)\left(6x-36\right)}\)

\(=\frac{x^3-6x^2-12x^2+72x}{\left(6x-36\right)\left(x^2-6x\right)}-\frac{36x-216}{\left(x^2-6x\right)\left(6x-36\right)}\)

\(=\frac{x^3-18x^2+72x-36x+216}{\left(6x-36\right)\left(x^2-6x\right)}=\frac{x^3-18x^2+36x+216}{\left(6x-36\right)\left(x^2-6x\right)}\)

Khách vãng lai đã xóa