Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thị Hải Yến
Xem chi tiết
Minh Hiếu
Xem chi tiết
Nguyễn Hoàng Minh
15 tháng 10 2021 lúc 21:05

1.

\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\\ \Leftrightarrow a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2< 0\\ \Leftrightarrow\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2\right)^2-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)< 0\\ \Leftrightarrow\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]< 0\\ \Leftrightarrow\left(a-b+c\right)\left(a-b-c\right)\left(a+b-c\right)\left(a+b+c\right)< 0\left(1\right)\)

Vì a,b,c là độ dài 3 cạnh của 1 tg nên \(\left\{{}\begin{matrix}a+c>b\\a-b< c\\a+b>c\\a+b+c>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b+c>0\\a-b-c< 0\\a+b-c>0\\a+b+c>0\end{matrix}\right.\)

Do đó \(\left(1\right)\) luôn đúng (do 3 dương nhân 1 âm ra âm)

Từ đó ta được đpcm

 

 

 

Nguyễn Hoàng Minh
15 tháng 10 2021 lúc 21:15

2.

\(a,Sửa:a^6+a^4+a^2b^2+b^4-b^6\\ =\left(a^6-b^6\right)+\left(a^4+b^4+a^2b^2\right)\\ =\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)+\left(a^4+b^4+a^2b^2\right)\\ =\left(a^2-b^2+1\right)\left(a^4+a^2b^2+b^4\right)\\ =\left[\left(a^2+b^2\right)^2-a^2b^2\right]\left(a^2-b^2+1\right)\\ =\left(a^2-ab+b^2\right)\left(a^2+ab+b^2\right)\left(a^2-b^2+1\right)\\ b,=\left(a^3+b^3\right)-1+3ab\\ =\left(a+b\right)^3-3ab\left(a+b\right)-1+3ab\\ =\left(a+b-1\right)\left(a^2+2ab+b^2+a+b+1\right)-3ab\left(a+b-1\right)\\ =\left(a+b-1\right)\left(a^2+b^2+1+a+b-ab\right)\)

 

Nguyễn Hoàng Minh
15 tháng 10 2021 lúc 21:21

\(c,=a^2b^2\left(b-a\right)+b^2c^2\left(c-a+a-b\right)-c^2a^2\left(c-a\right)\\ =-a^2b^2\left(a-b\right)+b^2c^2\left(a-b\right)+b^2c^2\left(c-a\right)-c^2a^2\left(c-a\right)\\ =\left(a-b\right)\left(b^2c^2-a^2b^2\right)+\left(c-a\right)\left(b^2c^2-c^2a^2\right)\\ =b^2\left(a-b\right)\left(c-a\right)\left(c+a\right)+c^2\left(c-a\right)\left(b-a\right)\left(b+a\right)\\ =\left(a-b\right)\left(c-a\right)\left[b^2\left(c+a\right)-c^2\left(b+a\right)\right]\\ =\left(a-b\right)\left(c-a\right)\left(b^2c+ab^2-bc^2-ac^2\right)\\ =\left(a-b\right)\left(c-a\right)\left[bc\left(b-c\right)+a\left(b-c\right)\left(b+c\right)\right]\\ =\left(a-b\right)\left(c-a\right)\left(b-c\right)\left(bc+ab+ac\right)\)

Nguyễn Thị Thanh Thảo
Xem chi tiết
nek Hiếu
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 12 2022 lúc 13:40

a: x-2b+c=1-2+3=2

b: x-2b+c=5-2*0+2=7

c: x-2b+c=3-2*2-4=-5

TN
Xem chi tiết
Cường Đào Tấn
Xem chi tiết
Isolde Moria
15 tháng 9 2016 lúc 15:51

Quy định của hoc24 là chỉ dc dăng 1 bài trong 1 câu hỏi bạn nhé

Bảo Duy Cute
15 tháng 9 2016 lúc 16:20

bài 1 :

 Tam giác ABC có độ dài 3 cạnh là a,b,c và có chu vi là 2 
--> a + b + c = 2 

Trong 1 tam giác thì ta có: 
a < b + c 
--> a + a < a + b + c 
--> 2a < 2 
--> a < 1 

Tương tự ta có : b < 1, c < 1 

Suy ra: (1 - a)(1 - b)(1 - c) > 0 
⇔ (1 – b – a + ab)(1 – c) > 0 
⇔ 1 – c – b + bc – a + ac + ab – abc > 0 
⇔ 1 – (a + b + c) + ab + bc + ca > abc 

Nên abc < -1 + ab + bc + ca 
⇔ 2abc < -2 + 2ab + 2bc + 2ca 
⇔ a² + b² + c² + 2abc < a² + b² + c² – 2 + 2ab + 2bc + 2ca 
⇔ a² + b² + c² + 2abc < (a + b + c)² - 2 
⇔ a² + b² + c² + 2abc < 2² - 2 , do a + b = c = 2 
⇔ a² + b² + c² + 2abc < 2 

--> đpcm 

Olala Thành
Xem chi tiết
Dark Killer
29 tháng 6 2016 lúc 9:46

a) Ta có: \(a+b+c=0\)

\(\Rightarrow a^2+b^2+c^2+2ab+2ac+2bc=0\)

\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\)

\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(b+a+c\right)\right]\)

\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\Rightarrow a^4+b^4+c^4=4\left(a^2b^2+b^2c^2+c^2a^2\right)-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\Rightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

Dark Killer
29 tháng 6 2016 lúc 10:03

b) Ta có: \(a+b+c=0\)

\(\Rightarrow2abc\left(a+b+c\right)=0\)

\(\Rightarrow2a^2bc+2ab^2c+2abc^2=0\)

Ta lại có:

\(a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)^2\)(chứng minh câu a)

\(\Rightarrow a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2+4a^2bc+4ab^2c+4abc^2\)

\(\Rightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\)

\(\Rightarrow a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)

Dark Killer
29 tháng 6 2016 lúc 10:15

c) Ta có: \(a+b+c=0\)

\(\Rightarrow a=-\left(b+c\right)\)

\(\Rightarrow a^2=b^2+c^2+2bc\)

\(\Rightarrow a^2-b^2-c^2=2bc\)

\(\Rightarrow a^4+b^4+c^4-2a^2b^2-2a^2c^2+2b^2c^2=4b^2c^2\)

\(\Rightarrow a^4+b^4+c^4=4b^2c^2+2a^2b^2+2a^2c^2-2b^2c^2\)

\(\Rightarrow a^4+b^4+c^4=2a^2b^2+2a^2c^2+2b^2c^2\)

\(\Rightarrow a^4+b^4+c^4+a^4+b^4+c^4=a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2\)

\(\Rightarrow2\left(a^4+b^4+c^4\right)=\left(a^2+b^2+c^2\right)^2\)

\(\Rightarrow a^4+b^4+c^4=\left(a^2+b^2+c^2\right):2\)

(Nhớ k cho mình với nhá!)

Chi Đinh
Xem chi tiết
Thị Phương Đoàn
Xem chi tiết
Trần Đức Thắng
26 tháng 6 2015 lúc 18:36

Ta có 

x + y = 2

=> (x+y)^2 = 4

=> x^2 + 2xy + y^2 = 4 

=> 10 + 2xy= 4

=> 2xy = -6

=> xy= -3

x^3 + y^3 = ( x+Y) ( x^2 - xy + y^2) = 2 ( 10 -- 3) = 2( 10  + 3 ) = 2.13 = 26

 

trung le quang
Xem chi tiết
Akai Haruma
6 tháng 7 2019 lúc 23:56

Bạn tham khảo lời giải bài 4 link sau:

Câu hỏi của Bonking - Toán lớp 9 | Học trực tuyến