Giai pt
y2+1/y2+x2+1/x2=4
giai hpt x2+y2+2x=1 va xy+y+2x+x2=y2
1) Giai he pt:
a) x2 = 3x - y va y2 = 3y - x b) x + y + xy = 5 va x2 + y2 =5
a. Trừ vế theo vế \(\left(1\right)\) cho \(\left(2\right)\) ta được \(x^2-y^2=4x-4y\)
\(\Leftrightarrow\left(x-y\right)\left(x+y-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=4-y\end{matrix}\right.\)
TH1: \(x=y\)
Phương trình \(\left(1\right)\) tương đương:
\(x^2=2x\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y=0\\x=y=2\end{matrix}\right.\)
TH2: \(x=4-y\)
Phương trình \(\left(2\right)\) tương đương:
\(y^2=4y-4\)
\(\Leftrightarrow y^2-4y+4=0\)
\(\Leftrightarrow\left(y-2\right)^2=0\)
\(\Leftrightarrow y=2\)
\(\Rightarrow x=2\)
Vậy hệ đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(0;0\right);\left(2;2\right)\right\}\)
b. \(\left\{{}\begin{matrix}x+y+xy=5\\x^2+y^2=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2-2xy=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2-10+2\left(x+y\right)=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2+2\left(x+y\right)-15=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y+5\right)\left(x+y-3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left[{}\begin{matrix}x+y=-5\\x+y=3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y=-5\\xy=10\end{matrix}\right.\\\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+y=-5\\xy=10\end{matrix}\right.\Leftrightarrow\) vô nghiệm
TH2: \(\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\end{matrix}\right.\)
Vậy ...
quy đồng các mẫu thức sau
a 1 / x3-8 và 3 / 4-2x
b x / x2-1 và 1 / x2+2x+1
c 1 / x+2 ; x+1 / x2-4x-4 và 5 / 2-x
d 1 / 3x+3y;2x / x2-y2 và x2-xy+y2 / x2-2xy+y2
a) \(\dfrac{1}{x^3-8}=\dfrac{1}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{2}{2\left(x-2\right)\left(x^2+2x+4\right)}\)
\(\dfrac{3}{4-2x}=\dfrac{-3}{2\left(x-2\right)}=\dfrac{-3\left(x^2+2x+4\right)}{2\left(x-2\right)\left(x^2+2x+4\right)}\)
b) \(\dfrac{x}{x^2-1}=\dfrac{x}{\left(x+1\right)\left(x-1\right)}=\dfrac{x\left(x+1\right)}{\left(x+1\right)^2\left(x-1\right)}\)
\(\dfrac{1}{x^2+2x+1}=\dfrac{1}{\left(x+1\right)^2}=\dfrac{x-1}{\left(x+1\right)^2\left(x-1\right)}\)
c) \(\dfrac{1}{x+2}=\dfrac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)^2}\)
\(\dfrac{1}{x^2-4x+4}=\dfrac{1}{\left(x-2\right)^2}=\dfrac{x+2}{\left(x+2\right)\left(x-2\right)^2}\)
\(\dfrac{5}{2-x}=\dfrac{-5}{x-2}=\dfrac{-5\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)^2}\)
d) \(\dfrac{1}{3x+3y}=\dfrac{1}{3\left(x+y\right)}=\dfrac{\left(x-y\right)^2}{3\left(x+y\right)\left(x-y\right)^2}\)
\(\dfrac{2x}{x^2-y^2}=\dfrac{2x}{\left(x+y\right)\left(x-y\right)}=\dfrac{6x\left(x-y\right)}{3\left(x+y\right)\left(x-y\right)^2}\)
\(\dfrac{x^2-xy+y^2}{x^2-2xy+y^2}=\dfrac{x^2-xy+y^2}{\left(x-y\right)^2}=\dfrac{3\left(x^2-xy+y^2\right)\left(x+y\right)}{3\left(x+y\right)\left(x-y\right)^2}=\dfrac{3\left(x^3+y^3\right)}{3\left(x+y\right)\left(x-y\right)^2}\)
a) A = x2 - 2x + 1 - y2 + 2x - 1
b) A = x2 - 4x + 4 - y2 - 6y - 9
c) A = 4x2 - 4x + 1 - y2 - 8y - 16
d) A = x2 - 2xy + y2 - z2 + zt - t2
a) A = x2 - 2x + 1 - y2 + 2x - 1
= (x2 - 2x + 1)-( y2-2x+1)
= (x-1)2-(y-1)2
= (x-1-y+1)(x-1+y-1)
b) A = x2 - 4x + 4 - y2 - 6y - 9
= (x2 - 4x + 4)-(y2+6y+9)
= (x-2)2-(y+3)2
= (x-2-y-3)(x-2+y+3)
c) A = 4x2 - 4x + 1 - y2 - 8y - 16
= (4x2 - 4x + 1) - (y2+8y+16)
= (2x-1)2-(y+4)2
= (2x-1-y-4)(2x-1+y+4)
d) A = x2 - 2xy + y2 - z2 + 2zt - t2
=(x2 - 2xy + y2)-(z2- 2zt + t2)
= (x-y)2-(z-t)2
=(x-y-z+t)(z-y+z-t)
câu d mik có sửa lại đề vì mik thấy đề hơi sai
a) A =
= x2 - y2 + 2x - 2x + 1 - 1
= x2 - y2 = (x-y) (x+y)
b) A=
= (x-2)2 - (y+3)2 = (x-y-5) (x+y+1)
c) A=
= (2x-1)2 - (y+4)2
= (2x+y+3) (2x-y-5)
d) đề có thể sai
1.
a.(-xy)(-2x2y+3xy-7x)
b.(1/6x2y2)(-0,3x2y-0,4xy+1)
c.(x+y)(x2+2xy+y2)
d.(x-y)(x2-2xy+y2)
2.
a.(x-y)(x2+xy+y2)
b.(x+y)(x2-xy+y2)
c.(4x-1)(6y+1)-3x(8y+4/3)
1.
\(a,\left(-xy\right)\left(-2x^2y+3xy-7x\right)\)
\(=2x^3y^2-3x^2y^2+7x^2y\)
\(b,\left(\dfrac{1}{6}x^2y^2\right)\left(-0,3x^2y-0,4xy+1\right)\)
\(=-\dfrac{1}{20}x^4y^3-\dfrac{1}{15}x^3y^3+\dfrac{1}{6}x^2y^2\)
\(c,\left(x+y\right)\left(x^2+2xy+y^2\right)\)
\(=\left(x+y\right)^3\)
\(=x^3+3x^2y+3xy^2+y^3\)
\(d,\left(x-y\right)\left(x^2-2xy+y^2\right)\)
\(=\left(x-y\right)^3\)
\(=x^3-3x^2y+3xy^2-y^3\)
2.
\(a,\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3-y^3\)
\(b,\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=x^3+y^3\)
\(c,\left(4x-1\right)\left(6y+1\right)-3x\left(8y+\dfrac{4}{3}\right)\)
\(=24xy+4x-6y-1-24xy-4x\)
\(=\left(24xy-24xy\right)+\left(4x-4x\right)-6y-1\)
\(=-6y-1\)
#Toru
Câu 1: x2 + 2 xy + y2 bằng:
A. x2 + y2 B.(x + y)2 C. y2 – x2 D. x2 – y2
Câu 2: (4x + 2)(4x – 2) bằng:
A. 4x2 + 4 B. 4x2 – 4 C. 16x2 + 4 D. 16x2 – 4
Câu 3: 25a2 + 9b2 - 30ab bằng:
A.(5a-9b)2 B.(5a – 3b)2 C.(5a+3b)2 D.(5a)2 – (3b)2
Câu 4: 8x3 +1 bằng
A.(2x+1).(4x2-2x+1) B. (2x-1).(4x2+2x+1) C.(2x+1)3 D.(2x)3-13
Câu 5:Thực hiện phép nhân x(3x2 + 2x - 5) ta được:
A.3x3 - 2x2 – 5x B. 3x3 + 2x2 – 5x C. 3x3 - 2x2 +5x D. 3x3 + 2x2 + 5x
câu 1 B
câu 2 D
câu 3 ko bt
câu 4 x=-1/2; x = -(căn bậc hai(3)*i-1)/4;x = (căn bậc hai(3)*i+1)/4;
câu 5 x=-5/3, x=0, x=1
Câu 1: x2 + 2 xy + y2 bằng:
A. x2 + y2 B.(x + y)2 C. y2 – x2 D. x2 – y2
Câu 2: (4x + 2)(4x – 2) bằng:
A. 4x2 + 4 B. 4x2 – 4 C. 16x2 + 4 D. 16x2 – 4
Câu 3: 25a2 + 9b2 - 30ab bằng:
A.(5a-9b)2 B.(5a – 3b)2 C.(5a+3b)2 D.(5a)2 – (3b)2
Câu 4: 8x3 +1 bằng
A.(2x+1).(4x2-2x+1) B. (2x-1).(4x2+2x+1) C.(2x+1)3 D.(2x)3-13
Câu 5:Thực hiện phép nhân x(3x2 + 2x - 5) ta được:
A.3x3 - 2x2 – 5x B. 3x3 + 2x2 – 5x C. 3x3 - 2x2 +5x D. 3x3 + 2x2 + 5x
Phân tích đa thức thành nhân tử:
a) x 2 - 10x + 9; b) 2 x 2 - 5x + 2;
c) 3 x 2 - 10xy + 3 y 2 ; d) 2xy - x 2 + 3 y 2 - 4y + 1;
g) 4x16 + 81; e) 8 x 2 - 12xy + 4 y 2 - 2x - 1;
h) 625 t 9 + 75 t 3 + 9;
i) ( 5 - y ) 6 - 2(125 - 75y + 15 y 2 - y 3 ) +1;
k) x 4 + 2018 x 2 + 2017x + 2018.
a2-2ab+b2-9
x2+2x+1-y2
25-x2-2xy-y2 giai nhanh giup em,com on
1) \(a^2-2ab+b^2-9=\left(a-b\right)^2-9=\left(a-b-3\right)\left(a-b+3\right)\)
2) \(x^2+2x+1-y^2=\left(x+1\right)^2-y^2=\left(x+1-y\right)\left(x+1+y\right)\)
3) \(25-x^2-2xy-y^2=25-\left(x+y\right)^2=\left(5-x-y\right)\left(5+x+y\right)\)
\(1,=\left(a-b\right)^2-9=\left(a-b-3\right)\left(a-b+3\right)\\ 2,=\left(x+1\right)^2-y^2=\left(x-y+1\right)\left(x+y+1\right)\\ 3,=25-\left(x+y\right)^2=\left(5-x-y\right)\left(5+x+y\right)\)
C33.4:
Ta có: {x2+y2=1(1)21x+3y+48x2−48y2+28xy=69(2){x2+y2=1(1)21x+3y+48x2−48y2+28xy=69(2)
Từ pt (1) ta có: x2+y2=1⇒y2=1−x2x2+y2=1⇒y2=1−x2
Thay vào pt (2) ta được: 21x+3√1−x2+48x2−48(1−x2)+28x√1−x2−69=021x+31−x2+48x2−48(1−x2)+28x1−x2−69=0
⇔3√(1−x)(1+x)+28x√(1−x)(1+x)−21√(1−x)(1−x)−48(1−x2)−48(1−x2)=0⇔3(1−x)(1+x)+28x(1−x)(1+x)−21(1−x)(1−x)−48(1−x2)−48(1−x2)=0
⇔√1−x(3√1+x+28x√1+x−21√1−x−96(1+x)√1−x)=0⇔1−x(31+x+28x1+x−211−x−96(1+x)1−x)=0
⇔[√1−x=03√1+x+28x√1+x−21√1−x−96(1+x)√1−x=0⇔[1−x=031+x+28x1+x−211−x−96(1+x)1−x=0
+ Nếu √1−x=0⇔1−x=0⇔x=1⇒y=01−x=0⇔1−x=0⇔x=1⇒y=0
+Nếu 3√1+x+28x√1+x−21√1−x−96(1+x)√1−x=031+x+28x1+x−211−x−96(1+x)1−x=0
⇔3√1+x+28x√1+x=21√1−x+96(1+x)√1−x⇔31+x+28x1+x=211−x+96(1+x)1−x
⇔784x3+952x2+177x+9=−9216x3−13248x2+8775x+13689⇔784x3+952x2+177x+9=−9216x3−13248x2+8775x+13689
⇔10000x3+14200x2−8598x−13680=0⇔10000x3+14200x2−8598x−13680=0
⇔x=2425⇒y=725⇔x=2425⇒y=725
Thay x=2424;y=725x=2424;y=725 vào hệ pt ta thấy thoả mãn
x=2425;y=725x=2425;y=725 là 1 cặp nghiệm của hệ pt
Vậy hệ pt có nghiệm: (x;y)∈{(2425;725),(1;0)}(x;y)∈{(2425;725),(1;0)}
Đúng hay sai?
Đúng nhưng có người trả lời rồi,cop mần chi cho khổ :)