chứng tỏ phân số \(\frac{2n+1}{3n+2}\) là phân số tối giản
Chứng tỏ rằng phân số \(\frac{2n+1}{3n+2}\)là phân số tối giản.
Để phân số \(\frac{2n+1}{3n+2}\)tối giản, ta cần chứng minh ƯCLN(2n+1; 3n+2) = 1 hoặc -1
Giả sử ƯCLN(2n+1; 3n+2) = d (d khác 1 và -1), ta có:
\(\left(2n+1\right)⋮d\) và \(\left(3n+2\right)⋮d\)
\(\Rightarrow\left[\left(3n+2\right)-\left(2n+1\right)\right]⋮d\) hay \(\left(n+1\right)⋮d\)
Vì \(\left(2n+1\right)⋮d\) và \(\left(n+1\right)⋮d\)
\(\Rightarrow\left[\left(2n+1\right)-\left(n+1\right)\right]⋮d\) hay \(n⋮d\)
Vì \(n⋮d\) nên \(2n⋮d\), mà \(\left(2n+1\right)⋮d\)
\(\Rightarrow1⋮d\) hay d = 1 hoặc d = -1.
Vậy phân số \(\frac{2n+1}{3n+2}\) tối giản.
Gọi d là UCLN của 2n +1 và 3n+2
2n+1\(⋮\)d
\(3n+2⋮d\)
\(\Rightarrow3\left(2n+1\right)⋮\)d và \(2\left(3n+2\right)⋮\)d
\(\Rightarrow6n+3⋮d\);\(6n+4⋮d\)
\(\Rightarrow6n+4-\left(6n+3\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow dpcm\)
Gọi d là ƯC của 2n+1 và 3n+2
( 2 n + 1 ) \(⋮\)d\(\Rightarrow\)3 × ( 2 n + 1 ) \(\Rightarrow\)( 6 n + 1 )
( 3 n + 2 ) \(⋮\)d\(\Rightarrow\)2 × ( 3 n + 2 ) \(\Rightarrow\)( 6 n + 2 )
\(\Rightarrow\)(3 n + 1 - 3 n + 2 )
= 1
\(\Rightarrow\)d = 1 ; d = -1
chứng tỏ rằng phân số \(\frac{2n+1}{3n+2}\)là phân số tối giản
Gọi UCLN(2n + 1 ; 3n + 2) = d
2n + 1 chia hết cho d => 3(2n + 1) = 6n + 3 chia hết cho d
3n + 2 chia hết cho d => 2(3n + 2) = 6n + 4 chia hết cho d
=> [(6n + 4) - (6n + 3)] chia hết cho d
1 chia hết cho d => d = 1
Vì UCLN(2n + 1 ; 3n + 2) = 1
Nên 2n + 1/3n + 2 tối giản (với mọi n thuộc N)
goij d là ước chung của 2n +1 và 3n+2
2n+1chia hết cho d => 3(2n+1) chia hết cho d => 6n +3 chia hết cho d (1)
3n+2 chia hết cho d=> 2(3n +2)chia hết cho d => 6n + 4 chia hết cho d (2)
lấy (2) trừ (1) ta có 1 chia hết cho d vậy d=cộng trừ 1
nên phân số đã cho tối giản
Để 2n + 1 / 3n+2 là phân số tôi giản thì 2n+1 và 3n +2 phải nguyên tố cùng nhau
Gọi d là ƯCLN(2n+1,3n+2) ; d thuộc N*
Suy ra 2n+1 chia hết cho d và 3n + 2 chia hết cho d
Hay : 3.(2n+1) chia hết cho d và 2. (3n+2) chia hết cho d
=> 6n+3 chia hết cho d và 6n+4 chia hết cho d
Suy ra [ ( 6n+4)-(6n+3 )] chia hết cho d
=> ( 6n+4 - 6n - 3 ) chia hết cho d
=> 1 chia hết cho d
=> d thuộc Ư(1) ={1} nên d =1
Hay ƯCLN (2n+1 , 3n+2 ) =1
Vậy 2n+1 / 3n+2 là phân số tối giản
Chứng tỏ rằng phân số \(\frac{2n+1}{3n+2}\)là phân số tối giản
Lời giải:
Gọi d là ƯCLN\((2n+1,3n+2)\) \((d\inℕ^∗)\)
Ta có : \(\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\)
=> \(\hept{\begin{cases}3(2n+1)⋮d\\2(3n+2)⋮d\end{cases}}\)
=> \(\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\)
=> \((6n+4)-(6n+3)⋮d\)
=> \(1⋮d\)
=> \(d=1\)
Vậy phân số \(\frac{2n+1}{3n+2}\)là phân số tối giản
chứng tỏ rằng phân số \(\frac{2n+1}{3n+2}\)là phân số tối giản
Gọi d=ƯCLN(2n+1;3n+2)
Ta có 2n+1 : d
3n+2 :d ( mình viết dấu : thay cho dấu chia hết nhé)
=>3(2n+1) :d
2(3n+2):d
=>6n+3 :d
6n+4 :d
=> (6n+4)-(6n+3):d
=>1:d
=>d=1
=> ƯCLN(2n+1;3n+2)=1
Vậy phân số \(\frac{2n+1}{3n+2}\) là phân số tối giản
Chứng tỏ rằng phân số \(\frac{2n+1}{3n+2}\) là phân số tối giản
gọi a là UCLN của tử và mẫu
suy ra 2n+1 chia hết cho a suy ra 6n+3 chia hết cho a
ta có 3n+2 chia hết cho a suy ra 6n +4 chia hết cho a
từ hai điều trên suy ra
(6n+4)-(6n+3) chia hết cho a
suy ra 1 chia hết cho a
suy ra a=1
suy ra đpcm
Gọi ƯCLN (2n+1,3n+2)=d
\(\Rightarrow2n+1⋮d\)
\(3n+2⋮d\)
\(\Rightarrow3n+2-2n+1⋮d\)
\(2\left(3n+2\right)-3\left(2n+1\right)⋮d\)
\(6n+4-6n+3⋮d\)
\(\Rightarrow1⋮d\Leftrightarrow d=1\)
Vậy ƯCLN \(\left(2n+1,3n+2\right)=1\Leftrightarrow\dfrac{2n+1}{3n+2}\) là p/s tối giản \(\left(dpcm\right)\)
Chứng tỏ rằng phân số \(\frac{2n+1}{3n+2}\) là phân số tối giản.
Gọi d = ƯCLN(2n + 1; 3n + 2) (d thuộc N*)
=> 2n + 1 chia hết cho d; 3n + 2 chia hết cho d
=> 3.(2n + 1) chia hết cho d; 2.(3n + 2) chia hết cho d
=> 6n + 3 chia hết cho d; 6n + 4 chia hết cho d
=> (6n + 4) - (6n + 3) chia hết cho d
=> 6n + 4 - 6n - 3 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n + 1; 3n + 2) = 1
Chứng tỏ phân số 2n + 1/3n + 2 tối giản
Gọi UCLN(2n+1,3n+2)=d
Ta có: 2n+1 chia hết cho d \(\Rightarrow\)3(2n+1) chia hết cho d \(\Rightarrow\)6n+3 chia hết cho d
3n+2 chia hết cho d \(\Rightarrow\)2(3n+2) chia hết cho d \(\Rightarrow\)6n+4 chia hết cho d
\(\Rightarrow\)(6n+4)-(6n+3) chia hết cho d
\(\Rightarrow\)1 chia hết cho d
\(\Rightarrow\)d=1
Vậy phân số \(\frac{2n+1}{3n+2}\) tối giản
gọi d là UCLN (2n+1;3n+2).
theo đề bài ta có:
2n+1 chia hết cho d =>6n+3 chia hết cho d
3n+2 chia hết cho d => 6n+4 chia hết cho d
=>1 chia hết cho => d=1
=>dpcm
. ủng hộ mik nha! ^.^
chứng tỏ rằng phân số \(\frac{2n+1}{3n+2}\)là phân số tối giản
gọi ước chung lớn nhất của 2n+1 và 3n+1 là d (d thuộc N*)
=> 2n+1 chia hết cho d (1) , 3n+1 chia hết cho d (2)
Từ (1) => 3.(2n+1) chia hết cho d => 6n+3 chia hết cho d (3)
Từ (2) => 2( 3n+1) chia hết cho d => 6n+2 chia hết cho d (4)
Từ (3) và (4) =>( 6n+3) -(6n+2) chia hết cho d
=> 1chia hết cho d (5)
Mà d thuộc N* (6)
Từ (5) và (6) => d=1
Vậy ƯCLN ( 2n+1,3n+1) =1
=> ĐCCM
Chứng tỏ rằng phân số : \(\frac{2n+1}{3n+2}\) là phân số tối giản
Ta có: \(\frac{2n+1}{3n+2}=\frac{2+1}{3+2}=\frac{3}{5}\)
Vì phân số \(\frac{3}{5}\)là phân số tối giản nên \(\frac{2n+1}{3n+2}\) là phân số tối giản.
Đs:
Chứng tỏ rằng phân số \(\dfrac{2n+1}{3n+2}\) là phân số tối giản
gọi d là ƯCLN(2n+1;3n+2).theo bài ra ta có:
2n+1 chia hết cho d=>6n+3 chia hết cho d
3n+2 chia hết cho d=>6n+4 chia hết cho d
=>1 chia hết cho d=>d=1
vậy ...
Gọi d ϵ ƯCLN\(\left(\dfrac{2n+1}{3n+2}\right)\)
Nên 2n+1⁝ d và 3n+2 ⁝ d
⇒ 3(2n+1) ⁝ d và 2(3n+2)
⇒ 6n+3 ⁝ d và 6n+4 ⁝ d
⇒ ( 6n+4 - 6n+3) ⁝ d
⇒ 1⁝ d
⇒ d= 1
Vậy:..
Chúc bạn học tốt