sinx ≠ 0 ⇔ x ≠ k.π
cosx ≠ 0 ⇔ x ≠ π/2+kπ với k nguyên
sinx ≠ 1 ⇔ x ≠ π/2+k2π và sinx ≠ -1 ⇔ x ≠ -π/2+k2π
cosx ≠ 1 ⇔ x ≠ k2π và cosx ≠ -1 ⇔ x ≠ π+k2π
em thắc mắc là tại sao lại những công thức này vậy ạ,:((((((
Vậy thì bạn phải biết đọc đường tròn lượng giác
Mà đừng hỏi mình đọc đường tròn lượng giác thế nào nhé, cái đấy SGK viết rất rõ rồi
sinx ≠ 0 ⇔ x ≠ k.π
cosx ≠ 0 ⇔ x ≠ π/2+kπ với k nguyên
sinx ≠ 1 ⇔ x ≠ π/2+k2π và sinx ≠ -1 ⇔ x ≠ -π/2+k2π
cosx ≠ 1 ⇔ x ≠ k2π và cosx ≠ -1 ⇔ x ≠ π+k2π
em thắc mắc là tại sao lại những công thức này vậy ạ,:((((((
Điều kiện xác định của phân thức: x^-4/x^2+2x
A. x\(\ne\)0
B. x\(\ne\)-2
C. x\(\ne\)0 và x\(\ne\)2
D. x\(\ne\)0 và x\(\ne\)-2
điều kiện xác định của phương trình \(\dfrac{8x+1}{2x+5}=\dfrac{4x+3}{x-2}\)là?
A. x \(\ne\)2 B. x \(\ne\)\(\dfrac{-5}{2}\) C. x \(\ne\)2 hoặc x \(\ne\)\(\dfrac{-5}{2}\) D. x\(\ne\)2 và x\(\ne\)\(\dfrac{-5}{2}\)
ĐKXĐ: \(\left\{{}\begin{matrix}2x+5\ne0\\x-2\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-\dfrac{5}{2}\\x\ne2\end{matrix}\right.\)
D
CMR : nếu x \(\ne\) -1 và y \(\ne\) -1 thì x + y + xy \(\ne\) -1
giả sử : \(x+y+xy=-1\) \(\Rightarrow x+y+xy+1=0\)
\(\Rightarrow\left(x+1\right)\left(y+1\right)=0\rightarrow x+1=0\) hoặc \(y+1=0\)
\(\Rightarrow x=-1\) hoặc \(y=-1\) ( trái giả thiết )
vậy nếu \(x\ne-1\) và \(y\ne-1\) thì \(x+y+xy\ne-1\)
Cho tỉ lệ thức\(\frac{a}{b}=\frac{c}{d}\)với a≠0,b≠0,c≠0,d≠0,a≠b,c≠d
chứng minh \(\left(\frac{a-b}{c-d}\right)^{2013}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\)
\(\frac{a}{b}=\frac{c}{d}\\ \Rightarrow\frac{a}{c}=\frac{b}{d}\\ \Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\\ \Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\left(\frac{a-b}{c-d}\right)^{2013}\left(1\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\left(\frac{a-b}{c-d}\right)^{2013}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\)
Hai ne`n nha` co' cu`ng mot chie`u da`i. Chie`u rong cua ne`n nha` thu' nha't ba`ng 1,2 la`n chie`u rong cua ne`n thu' hai. Khai la't gach bong thi` so' gach la't ne`n thu' nhat nhie`u hon ne`n thu' hai la` 400 vien gach. Hoi ne`n thu' nhat phai la't bao nhieu vien gach?
Nguyên tố Ne có 2 đồng vị 20 Ne (91%), còn lại là đồng vị X Ne. Nguyên tử khối trung bình của Ne là 20,18, giá trị X là
A. 20,18. B. 21,00. C. 22,00. D. 20,81.
Điều kiện xác định của phương trình : \(\dfrac{x}{x-2}-\dfrac{2x}{x^2-1}=0\) là :
\(A.x\ne-1;x\ne-2\)
\(B.x\ne2\) và \(x\ne\pm1\)
\(C.x\ne0\)
\(D.x\ne-2,x\ne1\)
để pt được xác định thì :
\(x-2\ne0;x^2-1\ne0\)
=>\(\left\{{}\begin{matrix}x\ne2\\x\ne-1\\x\ne1\end{matrix}\right.\)
Vậy chọn B
Chứng minh rằng nếu $x \ne -1$ và $y \ne -1$ thì $x + y + xy \ne -1$.
Cho \(x\ne-1;y\ne-1\)
Giả sử: \(x+y+xy=-1\)
<=>\(x+xy+y+1=0\)
<=>\(\left(x+xy\right)+\left(y+1\right)=0\)
<=>\(x\left(y+1\right)+\left(y+1\right)=0\)
<=>\(\left(x+1\right)\left(y+1\right)=0\)
<=>\(\orbr{\begin{cases}x+1=0\\y+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\y=-1\end{cases}}}\)(Trái với điều giả thiết)
=>\(x+y+xy\ne-1\)
Giả sử .
<=> \(\left[{}\begin{matrix}x+1=0\\y+1=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=-1\\y=-1\end{matrix}\right.\) ( mâu thuẫn với giả thiết)
Vậy nếu x ≠ -1 và y ≠ -1 thì x = y + xy ≠ -1
Giả sử x + y + xy = -1
⇒x+y+xy+1=0 ⇔ x(1+y)+(y+1)=0
⇔(y+1)(x+1)=0⇔\(\left[{}\begin{matrix}x+1=0\\y+1=0\end{matrix}\right.\)⇔\(\left[{}\begin{matrix}x=-1\\y=-1\end{matrix}\right.\)(mâu thuẫn)
vậy nếu x≠ -1 và y≠ -1 thì x+y=xy≠ -1