Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyễn ngọc tuân

Những câu hỏi liên quan
Bùi Phương Nam
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 8 2020 lúc 11:15

Vậy thì bạn phải biết đọc đường tròn lượng giác

Mà đừng hỏi mình đọc đường tròn lượng giác thế nào nhé, cái đấy SGK viết rất rõ rồi

Bùi Phương Nam
Xem chi tiết
Dương Thanh Nam
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 1 2023 lúc 9:00

Chọn D

tvman
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 8 2021 lúc 21:36

ĐKXĐ: \(\left\{{}\begin{matrix}2x+5\ne0\\x-2\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-\dfrac{5}{2}\\x\ne2\end{matrix}\right.\)

D

Nguyễn Lê Phước Thịnh
7 tháng 8 2021 lúc 22:34

Chọn D

hoàng bánh hợp 2k12
Xem chi tiết
diggory ( kẻ lạc lõng )
13 tháng 5 2022 lúc 17:45

giả sử : \(x+y+xy=-1\) \(\Rightarrow x+y+xy+1=0\)

\(\Rightarrow\left(x+1\right)\left(y+1\right)=0\rightarrow x+1=0\) hoặc \(y+1=0\)

\(\Rightarrow x=-1\) hoặc \(y=-1\) ( trái giả thiết )

vậy nếu \(x\ne-1\) và \(y\ne-1\) thì \(x+y+xy\ne-1\)

Rosie
Xem chi tiết
👁💧👄💧👁
23 tháng 11 2019 lúc 18:28

\(\frac{a}{b}=\frac{c}{d}\\ \Rightarrow\frac{a}{c}=\frac{b}{d}\\ \Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\\ \Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\left(\frac{a-b}{c-d}\right)^{2013}\left(1\right)\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\left(\frac{a-b}{c-d}\right)^{2013}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\)

Khách vãng lai đã xóa
PickADick - Many Things
Xem chi tiết
Nguyễn Huỳnh Quang Khải
Xem chi tiết
Đại Tiểu Thư
Xem chi tiết
Đỗ Tuệ Lâm
24 tháng 4 2022 lúc 7:51

để pt được xác định thì :

\(x-2\ne0;x^2-1\ne0\)

=>\(\left\{{}\begin{matrix}x\ne2\\x\ne-1\\x\ne1\end{matrix}\right.\)

Vậy chọn B

Thầy Cao Đô
Xem chi tiết
⚚ßé Só¡⁀ᶦᵈᵒᶫ
9 tháng 2 2022 lúc 9:03

Cho \(x\ne-1;y\ne-1\)

Giả sử: \(x+y+xy=-1\)

<=>\(x+xy+y+1=0\)

<=>\(\left(x+xy\right)+\left(y+1\right)=0\)

<=>\(x\left(y+1\right)+\left(y+1\right)=0\)

<=>\(\left(x+1\right)\left(y+1\right)=0\)

<=>\(\orbr{\begin{cases}x+1=0\\y+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\y=-1\end{cases}}}\)(Trái với điều giả thiết)

=>\(x+y+xy\ne-1\)

Khách vãng lai đã xóa
Tran Khanh Chi
16 tháng 7 2022 lúc 9:59

Giả sử x + y + xy = -1.

\Rightarrow x + y + xy + 1 = 0 \Leftrightarrow (x + 1)(y + 1) = 0

<=> \(\left[{}\begin{matrix}x+1=0\\y+1=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=-1\\y=-1\end{matrix}\right.\) ( mâu thuẫn với giả thiết)

Vậy nếu x ≠ -1 và y ≠ -1 thì x = y + xy ≠ -1

Nguyễn Tuân
20 tháng 7 2022 lúc 15:44

Giả sử x + y + xy = -1

⇒x+y+xy+1=0  ⇔ x(1+y)+(y+1)=0

⇔(y+1)(x+1)=0⇔\(\left[{}\begin{matrix}x+1=0\\y+1=0\end{matrix}\right.\)\(\left[{}\begin{matrix}x=-1\\y=-1\end{matrix}\right.\)(mâu thuẫn)

vậy nếu x≠ -1 và y≠ -1 thì x+y=xy≠ -1