Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Rosie

Cho tỉ lệ thức\(\frac{a}{b}=\frac{c}{d}\)với a≠0,b≠0,c≠0,d≠0,a≠b,c≠d

chứng minh \(\left(\frac{a-b}{c-d}\right)^{2013}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\)

👁💧👄💧👁
23 tháng 11 2019 lúc 18:28

\(\frac{a}{b}=\frac{c}{d}\\ \Rightarrow\frac{a}{c}=\frac{b}{d}\\ \Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\\ \Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\left(\frac{a-b}{c-d}\right)^{2013}\left(1\right)\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\left(\frac{a-b}{c-d}\right)^{2013}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Trần Quốc Tuấn hi
Xem chi tiết
Phan Thị Bích Hằng
Xem chi tiết
Quỳnh Như
Xem chi tiết
Trần Quốc Việt Hùng
Xem chi tiết
Ngọc Ánh
Xem chi tiết
Anime Chibi
Xem chi tiết
Đặng Quốc Huy
Xem chi tiết
Đặng Quốc Huy
Xem chi tiết
Đặng Quốc Huy
Xem chi tiết