Cho : \(\frac{a}{b}=\frac{c}{d}\left(a,b,c,d\ne0\right)\)
Chứng minh ràng: \(\left(2018a+2019c\right)\left(b+d\right)=\left(a+c\right)\left(2018b+2019d\right)\)
Các bạn giúp mình nhé : Bạn Vũ Minh Tuấn , Nguyễn Việt Lâm , Nguyễn Văn Đạt , Băng Băng 2k6 và thầy Akai Haruma , Phynit và tất cả các bạn khác vào giúp mình với ạ !!!
Cho a,b,c,d \(\ne\) 0 và \(b^2=ac;c^2=bd.\) Chứng minh \(\frac{a^2+b^2+c^2}{b^2+c^2+d^2}=\frac{\left(a+b+c\right)^2}{\left(b+c+d\right)^2}=\frac{a}{d}\)
Cho a,b,c,d \(\ne\) 0 và \(b^2=ac;c^2=bd\). Chứng minh: \(\frac{a^2+b^2+c^2}{b^2+c^2+d^2}=\frac{\left(a+b+c\right)^2}{\left(b+c+d\right)^2}=\frac{a}{d}\)
Cho a,b,c,d \(\ne\) 0 và \(b^2=ac;c^2=bd\). Chứng minh \(\frac{a^2+b^2+c^2}{b^2+c^2+d^2}=\frac{\left(a+b+c\right)^2}{\left(b+c+d\right)^2}=\frac{a}{d}\)
Bài 1: Tìm x biết: \(\left|x-\frac{2}{3}\right|-\left|x-7\right|=\frac{5}{3}\)
Bìa 2: Cho \(\frac{a}{b}=\frac{c}{d}\) và b+d\(\ne0\) . Chứng minh rằng \(\frac{a^{2009}+c^{2009}}{b^{2009}+d^{2009}}=\frac{\left(a+c\right)^{2009}}{\left(b+d\right)^{2009}}\)
Cho \(\text{a,b,c \in R; a,b,c \ne0}\)thỏa mãn: b2 = a.c
Chứng minh rằng : \(\frac{a}{c}=\left(\frac{a+2018b}{b+2018c}\right)^2\)
Bài 1: Tìm x:
a, \(\left[x\right]^2-5\left[x\right]+4=0\)
b, \(\left[x\right]^2-6\left[x\right]+8=0\)
Bài 2: Tìm x: \(2\left[x\right]=x+2\left\{x\right\}\)
Bài 3: Cho a;b;c;d là các số nguyên dương ; \(A=\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}\). Tìm \(\left[A\right]\)
Cho \(ac=b^2\); \(ad=c^2\). Chứng minh rằng: \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Cho \(\frac{a}{b}=\frac{c}{d}\)(b,d ≠ 0; b≠ d). Chứng minh rằng : \(\frac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\frac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}\)