trong mặt phẳng tọa độ oxy, cho vecto a = 2 vecto i - vecto j. tọa độ của vecto a là
1. Trong mặt phẳng Oxy, có trọng tâm G(1,-1), M(2,1) và N(4,-2) lần lượt là trung điểm của AB, BC. Tìm tọa độ điểm B
2. Trong mặt phẳng Oxy, cho A(1,3), B(-2,2). Biết đường thẳng AB cắt trục tung tại điểm M(0,b). Giá trị b thuộc khoảng nào
3. Trong mặt phẳng tọa độ Oxy, cho A thỏa vecto OA= 2vecto i + 3vecto j. Tọa độ điểm A là
4. Trong mặt phẳng Oxy, cho vecto x=(1,2), vecto y=(3,4), vecto z=(5,-1). Tọa độ vecto u = 2vecto x + vecto y - vecto z là
5. Trong mặt phẳng tọa độ Oxy, cho M(2,-3), N(4,7). Tọa độ trung điểm I của đoạn thẳng MN là
6. Cho vecto x=(-4,7) và hai vecto a=(2,-1), b=(-3,4). Nếu vecto x = m vecto a + n vecto b thì m, n là cặp số nào
Trong mặt phẳng tọa độ Oxy cho \(\overrightarrow{a}=2\overrightarrow{i}\) , \(\overrightarrow{b}=-3\overrightarrow{j}\), \(\overrightarrow{c}=3\overrightarrow{i}-4\overrightarrow{j}\)
Phân tích vecto c theo hai vecto a và vecto b
Giả sử `\vec{c}=m\vec{a}+n\vec{b}`
`<=>(3;-4)=m(2;0)+n(0;-3)`
`<=>(3;-4)=(2m;-3n)`
`<=>{(m=3/2),(n=4/3):}`
`=>\vec{c}=3/2\vec{a}+4/3\vec{b}`
(1) trong mặt phẳng tọa độ Oxy, cho hai vecto \(\overrightarrow{a}=\left(1;-4\right)\), \(\overrightarrow{b}=\left(0;2\right)\). tọa độ của vecto \(\overrightarrow{u}=2\overrightarrow{a}-\overrightarrow{b}\) là?
(2) trong mặt phẳng tọa độ Oxy, cho hai vecto \(\overrightarrow{a}=\left(-7;3\right)\), \(\overrightarrow{b}=\left(4;1\right)\). tọa độ của vecto \(\overrightarrow{u}=\overrightarrow{b}-2\overrightarrow{a}\) là?
(3) trong mặt phẳng tọa độ Oxy, cho hai vecto \(\overrightarrow{u}=\left(-5;4\right)\), \(\overrightarrow{v}=-3\overrightarrow{j}\). tọa độ của vecto \(\overrightarrow{a}=2\overrightarrow{u}-5\overrightarrow{v}\) là?
(4) trong mặt phẳng tọa độ Oxy, cho hai điểm A (1;1), B (4;-7) và \(\overrightarrow{OM}=2\overrightarrow{OA}-5\overrightarrow{OB}\). tổng hoành độ và tung độ của điểm M là?
giúp mk vs ạ mk cần gấp thank
(1); vecto u=2*vecto a-vecto b
=>\(\left\{{}\begin{matrix}x=2\cdot1-0=2\\y=2\cdot\left(-4\right)-2=-10\end{matrix}\right.\)
(2): vecto u=-2*vecto a+vecto b
=>\(\left\{{}\begin{matrix}x=-2\cdot\left(-7\right)+4=18\\y=-2\cdot3+1=-5\end{matrix}\right.\)
(3): vecto a=2*vecto u-5*vecto v
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\cdot\left(-5\right)-5\cdot0=-10\\b=2\cdot4-5\cdot\left(-3\right)=15+8=23\end{matrix}\right.\)
(4): vecto OM=(x;y)
2 vecto OA-5 vecto OB=(-18;37)
=>x=-18; y=37
=>x+y=19
Trong mặt phẳng hệ tọa độ Oxy. HÃy chọn đề sai
A. M thuộc Ox <=> ym=0
B. M thuộc Õ <=> xm=0
C. Tọa độ của vecto OM cùng tọa độ điểm M
D. vecto a = vecto 2i + vecto 3j <=> vecto a = (2;3)
Trong mặt phẳng tọa độ Oxy, cho điểm B(-1;0) và vecto \(\overrightarrow v = \left( {0; - 7} \right)\)
a) Biểu diễn vecto \(\overrightarrow v \) qua hai vecto \(\overrightarrow i ,\overrightarrow j \)
b) Biểu diễn vecto \(\overrightarrow {OB} \) qua hai vecto\(\overrightarrow i ,\overrightarrow j \)
a) Vì \(\overrightarrow v = \left( {0; - 7} \right)\)nên \(\overrightarrow v = 0\overrightarrow i + \left( { - 7} \right)\overrightarrow j = - 7\overrightarrow j \)
b) Vì B có tọa độ là (-1; 0) nên \(\overrightarrow {OB} = \left( { - 1;{\rm{ }}0} \right)\). Do đó: \(\overrightarrow {OB} = \left( { - 1} \right)\overrightarrow i + 0\overrightarrow j = - \overrightarrow i \)
Trong hệ trục tọa độ (O, vecto i, vecto j) cho 2 vécto vecto a=2 vecto i - 4 vecto j ; vecto b=-5 vecto i + 3 vecto j. Tọa độ của vecto u=2 vecto a - vecto b là
\(\overrightarrow{a}=2\overrightarrow{i}-4\overrightarrow{j}\Rightarrow\overrightarrow{a}=\left(2;-4\right)\)
\(\overrightarrow{b}=-5\overrightarrow{i}+3\overrightarrow{j}\Rightarrow\overrightarrow{b}=\left(-5;3\right)\)
\(\Rightarrow\overrightarrow{u}=2\overrightarrow{a}-\overrightarrow{b}=2\left(2;-4\right)-\left(-5;3\right)=\left(9;-11\right)\)
Trong mặt phẳng tọa độ Oxy cho các vecto, vecto u=(-2,1) và vecto v=3vecto i -m vecto j. Tìm m để hai vecto u,v cùng phương
\(\overrightarrow{v}=3\overrightarrow{i}-m\overrightarrow{j}\Rightarrow\overrightarrow{v}=\left(3;-m\right)\)
Để \(\overrightarrow{u};\overrightarrow{v}\) cùng phương:
\(\Leftrightarrow\frac{3}{-2}=\frac{-m}{1}\Rightarrow m=\frac{3}{2}\)
trong mặt phẳng tọa độ Oxy cho hai vecto a=( 1;-2) vecto b=(-1;-3). tính cos (vecto a; vecto b)
\(cos\left(\overrightarrow{a},\overrightarrow{b}\right)=\dfrac{1\cdot\left(-1\right)+\left(-2\right)\cdot\left(-3\right)}{\sqrt{1^2+2^2}\cdot\sqrt{1^2+3^2}}=\dfrac{5}{\sqrt{5}\cdot\sqrt{10}}=\dfrac{5}{\sqrt{50}}=\dfrac{1}{\sqrt{2}}\)
Trong mặt phẳng tọa độ Oxy, cho 2 vecto u(4;1) và v(1;4).Tìm m để vecto a=mu+v tạo với vecto b=i+j một góc 45 độ
Ai làm ơn giải hộ mình bài này với ạ.
Ta có: \(\left\{{}\begin{matrix}\overrightarrow{a}=m\overrightarrow{u}+\overrightarrow{v}=\left(4m+1;m+4\right)\\\overrightarrow{b}=\overrightarrow{i}+\overrightarrow{j}=\left(1;1\right)\end{matrix}\right.\)
Yêu cầu bài toán <=> cos\(\left(\overrightarrow{a};\overrightarrow{b}\right)\)=cos45o =\(\dfrac{\sqrt{2}}{2}\)
<=> \(\dfrac{\left(4m+1\right)+\left(m+4\right)}{\sqrt{2}\sqrt{\left(4m+1\right)^2+\left(m+4\right)^2}}=\dfrac{\sqrt{2}}{2}\)
<=> \(\dfrac{5\left(m+1\right)}{\sqrt{2}\sqrt{17m^2+16+17}}=\dfrac{\sqrt{2}}{2}\)
<=> \(5\left(m+1\right)=\sqrt{17m^2+16m+17}\) <=>\(\left\{{}\begin{matrix}m+1\ge0\\25m^2+50m+25=17m^2+16m+17\end{matrix}\right.\)
<=> m=\(-\dfrac{1}{4}\)