giải pt sau 40 - x = 20
Giải PT sau: \(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)
Ta có:
\(x^2+9x+2x=\left(x+4\right)\left(x+5\right)\)
\(x^2+11x+30=\left(x+6\right)\left(x+5\right)\)
\(x^2+13x+42=\left(x+6\right)\left(x+7\right)\)
ĐK: \(\left\{{}\begin{matrix}x\ne-4\\x\ne-5\\x\ne-6\\x\ne-7\end{matrix}\right.\)
pt \(\Leftrightarrow\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{18\left(x+7\right)}{18\left(x+4\right)\left(x+7\right)}-\dfrac{18\left(x+4\right)}{18\left(x+4\right)\left(x+7\right)}=\dfrac{\left(x+4\right)\left(x+7\right)}{18\left(x+4\right)\left(x+7\right)}\)
\(\Rightarrow18\left(x+7\right)-18\left(x+4\right)=\left(x+4\right)\left(x+7\right)\)
\(\Leftrightarrow\left(x+13\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+13=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-13\\x=2\end{matrix}\right.\) (tm)
Giải pt sau
\(\frac{X^2}{\sqrt{5}}-\sqrt{20=0}\)
\(\Leftrightarrow\left|x-1,5\right|=-\left|2,5-x\right|.\)(1)
VT >=0; VP <=0. Để đẳng thức 1 xảy ra thì VT = VP = 0.
Nhưng vì VP = 0 =>x= 2,5 thì VT = 1 nên PT vô nghiệm.
Giải hệ pt sau:\(\left\{{}\begin{matrix}x\sqrt{y}+y\sqrt{x}=6\\x^2y+xy^2=20\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x\sqrt{y}=a\\y\sqrt{x}=b\end{matrix}\right.\)
Hpt \(\Leftrightarrow\left\{{}\begin{matrix}a+b=6\\a^2+b^2=20\end{matrix}\right.\)
=> Hệ đối xứng loại 1 => EZ
Đặt \(\left\{{}\begin{matrix}a=x\sqrt{y}\\b=\sqrt{x}.y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=6\\a^2+b^2=20\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=6-a\\a^2+\left(6-a\right)^2=20\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=6-a\\2a^2-12a+16=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=6-a\\\left[{}\begin{matrix}a=4\\b=2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=4\\b=2\end{matrix}\right.\\\left\{{}\begin{matrix}a=2\\b=4\end{matrix}\right.\end{matrix}\right.\)
Trường hợp \(\left\{{}\begin{matrix}a=4\\b=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\sqrt{y}=4\\y\sqrt{x}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\sqrt{y}=2\sqrt{x}.y\\y\sqrt{x}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\sqrt{y}-2\sqrt{x}.y=0\\y\sqrt{x}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{xy}\left(\sqrt{x}-2\sqrt{y}\right)=0\\y\sqrt{x}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=2\sqrt{y}\\\sqrt{x}.y=2\end{matrix}\right.\)( vì \(\sqrt{xy}\ne0\) )
\(\Leftrightarrow\left\{{}\begin{matrix}x=4y\\\sqrt{4y}.y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4y\\y\sqrt{y}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=4\end{matrix}\right.\)
TRường hợp 2 tương tự nha
giải pt:
(x+1)(x+2)(x+3)(x+4)=40
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=40\\ \Leftrightarrow\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]=40\\ \Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=40\\ \Leftrightarrow\left(x^2+5x+4\right)\left[\left(x^2+5x+4\right)+2\right]=40\\ \Leftrightarrow\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)-40=0\)
Mình thấy nghiệm xấu lắm, bạn xem có đúng đề ko
giải hệ pt sau:
\(\left\{{}\begin{matrix}x+y=40\\\left(x+5\right)\left(y+3\right)=xy+195\end{matrix}\right.\)
Giải các pt sau: a,(x2+5x+6)(x2+9x+20)=24
b,x4-24x=32
(x2 + 5x + 6)(x2 + 9x + 20) = 24
<=> (x + 2)(x + 3)(x + 4)(x + 5) - 24 = 0
<=> (x2 + 7x + 10)(x2 + 7x + 12) - 24 = 0 (1)
Đặt x2 + 7x + 11 = t, ta có:
(1) <=> (t - 1)(t + 1) - 24 = 0
<=> t2 - 1 - 24 = 0
<=> (t - 5)(t + 5) = 0
\(\Leftrightarrow\left[{}\begin{matrix}t-5=0\\t+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+7x+11-5=0\\x^2+7x+11+5=0\end{matrix}\right.\)
<=> (x + 1)(x + 6) = 0 (vì \(x^2+7x+16\ge\dfrac{15}{4}>0\))
<=> x = - 1 hoặc x = - 6
~ ~ ~ ~ ~
x4 - 24x = 32
<=> x4 - 24x - 32 = 0
<=> (x2 - 2x - 4)(x2 + 2x + 8) = 0
<=> \(\left(x-1-\sqrt{5}\right)\left(x-1+\sqrt{5}\right)=0\) (vì \(x^2+2x+8\ge7>0\))
\(\Leftrightarrow\left[{}\begin{matrix}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{matrix}\right.\)
Giải PT x/40-x/45=3/2
\(\frac{x}{40}-\frac{x}{45}=\frac{3}{2}\)
\(\Leftrightarrow\frac{9x-8x}{360}=\frac{3}{2}\)
\(\Leftrightarrow2x=3.360\)
\(\Leftrightarrow2x=1080\)
\(\Leftrightarrow x=540\)
\(\frac{x}{40}-\frac{x}{45}=\frac{3}{2}\)
\(\Leftrightarrow\frac{18x}{720}-\frac{16x}{720}=\frac{1080}{720}\)
\(\Rightarrow18x-16x=1080\)(KHỬ MẪU)
\(\Leftrightarrow2x=1080\)
\(\Leftrightarrow x=\frac{1080}{2}\)
\(\Leftrightarrow x=540\)
Vậy tập nghiệm của phương trình là \(S=\left\{540\right\}\)
giải pt \(\left(x-1\right)^4+\left(x+3\right)^4=40\)
Đặt \(x+1=t\)
PT\(\Leftrightarrow\left(t-2\right)^4+\left(t+2\right)^4=40\)
\(\Leftrightarrow\left[\left(t-2\right)^2\right]^2+\left[\left(t+2\right)^2\right]^2=40\)
\(\Leftrightarrow\left[\left(t-2\right)^2+\left(t+2\right)^2\right]^2-2\left(t-2\right)^2\left(t-2\right)^2=40\)
\(\Leftrightarrow\left(t^2-4t+4+t^2+4t+4\right)^2-2\left(t^2-4\right)^2=40\)
\(\Leftrightarrow\left(2t^2+8\right)^2-2\left(t^2-4\right)^2=40\)
\(\Leftrightarrow...\)
Cân bằng PT sau : Al+HCl = HAl + Cl3
Tính khối lượng của hợp chất x biết Cu=40&, S=20%, còn lại là ôxi. Biết rằng hợp chất X nặng 80 lần.
Tìm CTHH của hợp chất x