\(\sqrt{3x-5}+\sqrt{7-3x}\)
\(Giảiphươngtrình:\sqrt{7+3x}+\sqrt{13-3x}+5\cdot\sqrt{\left(7+3x\right)\left(13-3x\right)}=46\)
\(\left(\sqrt{7+3x}-4\right)+\left(\sqrt{13-3x}-2\right)+5.\left(\sqrt{\left(7+3x\right)\left(13-3x\right)}-8\right)=0\)
=) \(\frac{7+3x-16}{\sqrt{7+3x}+4}+\frac{13-3x-4}{\sqrt{13-3x}+2}+5.\left(\sqrt{91+18x-9x^2}-8\right)=0\)
=) \(\frac{3\left(x-3\right)}{\sqrt{7+3x}+4}+\frac{3\left(3-x\right)}{\sqrt{13-3x}+2}+\frac{5\left(27+18x-9x^2\right)}{\sqrt{91+18x-9x^2}+8}=0\)
=) \(\frac{3\left(x-3\right)}{\sqrt{7+3x}+4}-\frac{3\left(x-3\right)}{\sqrt{13-3x}+2}-\frac{45\left(x+1\right)\left(x-3\right)}{\sqrt{91+18x-9x^2}+8}=0\)
=) đến đây chắc là tự làm đc rồi
giải pt : \(\sqrt{7+3x}+\sqrt{13-3x}+5\sqrt{\left(7+3x\right)\left(13-3x\right)}=46\)
Đặt \(\sqrt{7+3x}=a;\sqrt{13-3x}=b\)
=>a+b+5ab=46
=>(a+b)^2=46-5ab
=>a^2+b^2+2ab=2116-460ab+25a^2b^2
=>25a^2b^2-460ab+2116=7+3x+13-3x+2ab
=>25a^2b^2-462ab+2096=0
=>\(\left[{}\begin{matrix}ab=\dfrac{262}{25}\\ab=8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left(7+3x\right)\cdot\left(13-3x\right)=109.8304\\\left(7+3x\right)\left(13-3x\right)=64\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}91-21x+39x-9x^2=109.8304\\91-21x+39x-9x^2=64\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-9x^2+18x-18.8304=0\\-9x^2+18x+27=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Giải phương trình : \(\sqrt{7+3x}+\sqrt{13-3x}+5\sqrt{\left(7+3x\right)\left(13-3x\right)}=46\)
rút gọn các biểu thức sau với x ≥ 0
a) \(2\sqrt{3x}-4\sqrt{3x}+27-3\sqrt{3x}\)
b) \(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}+28\)
\(a,=27-5\sqrt{3x}\\ b,=3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}+28=14\sqrt{2x}+28\)
tìm ĐKXĐ
1, \(\sqrt{6x+1}\)
2,\(\dfrac{\sqrt{3}-4}{\sqrt{3x-5}}\)
3, \(\sqrt{\dfrac{2\sqrt{15}-\sqrt{59}}{x-7}}\)
4,\(\sqrt{\dfrac{-3x}{1-\sqrt{2}}}\)
5, \(\sqrt{\sqrt{5}-\sqrt{3}x}\)
1.
6x + 1 ≥0
<=>6x≥-1
<=>x≥-1/6
2.
3x - 5 > 0
<=> 3x > 5
<=> x > 5/3
5.
√5 - √3 . x ≥0
<=> √3 . x ≤ √5
<=> x ≤ √5/3 = (√15)/3
Tìm GTLN của:
\(A=\sqrt{3x-5}+\sqrt{7-3x}\)
\(A\le\sqrt{2\left(3x-5+7-3x\right)}=2\)
\(A_{max}=2\) khi \(3x-5=7-3x\Leftrightarrow x=2\)
1.Giai pt bang cach dat an phu :
a, 3x + 14 + 5\(\sqrt{x-2}\) = 7(\(\sqrt{x+1}+\sqrt{x^2-x-2}\) )
b, 7\(\sqrt{3x-7}\) +(4x-7)\(\sqrt{7-x}\) =32
Giải các phương trìnha/ \(x^2+8=3\sqrt{x^3+8}\)
b/ \(\sqrt{7+3x}+\sqrt{13-3x}+5\sqrt{\left(7+3x\right)\left(13-3x\right)}=46\)
c/ \(\sqrt[11]{x-4}+\sqrt[11]{x-5}+\sqrt[11]{2x-9}=2\)
a) \(x^2+8=3\sqrt{x^3+8}\)
\(\left(x^2+8\right)^2=\left(3\sqrt{x^2+8}\right)^2\)
\(x^4+16x^2+64=9x^2+72\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
a)\(\sqrt{9+x}=5-\sqrt{4+2x}\)
b)\(\sqrt{8+3x}-\sqrt{5+3x}=\sqrt{5x-4}-\sqrt{5x-7}\)
a/ ĐKXĐ: \(x\ge-2\)
\(\Leftrightarrow\sqrt{x+9}-3+\sqrt{2x+4}-2=0\)
\(\Leftrightarrow\frac{x}{\sqrt{x+9}+3}+\frac{2x}{\sqrt{2x+4}+2}=0\)
\(\Leftrightarrow x\left(\frac{1}{\sqrt{x+9}+3}+\frac{2}{\sqrt{2x+4}+2}\right)=0\)
\(\Leftrightarrow x=0\)
b/ ĐKXĐ: \(x\ge\frac{7}{5}\)
\(\Leftrightarrow\sqrt{5x-7}-\sqrt{3x+5}=\sqrt{5x-4}-\sqrt{3x+8}\)
\(\Leftrightarrow\frac{2x-12}{\sqrt{5x-7}+\sqrt{3x+5}}=\frac{2x-12}{\sqrt{5x-4}+\sqrt{3x+8}}\)
\(\Leftrightarrow2x-12=0\Rightarrow x=6\)