Đặt \(\sqrt{7+3x}=a;\sqrt{13-3x}=b\)
=>a+b+5ab=46
=>(a+b)^2=46-5ab
=>a^2+b^2+2ab=2116-460ab+25a^2b^2
=>25a^2b^2-460ab+2116=7+3x+13-3x+2ab
=>25a^2b^2-462ab+2096=0
=>\(\left[{}\begin{matrix}ab=\dfrac{262}{25}\\ab=8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left(7+3x\right)\cdot\left(13-3x\right)=109.8304\\\left(7+3x\right)\left(13-3x\right)=64\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}91-21x+39x-9x^2=109.8304\\91-21x+39x-9x^2=64\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-9x^2+18x-18.8304=0\\-9x^2+18x+27=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)