Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
NGUYỄN THỊ PHƯƠNG THẢO
Xem chi tiết
Trần Mai Phương
16 tháng 10 2021 lúc 19:55

giúp j vậy bn

Khách vãng lai đã xóa
Vĩnh biệt em, chị để mất...
16 tháng 10 2021 lúc 20:01

Đề ?_?

@Cpr

#Forever

Khách vãng lai đã xóa
☪️ - 🇲 🇴 🇴 🇳
16 tháng 10 2021 lúc 20:02

Mong bạn đưa câu hỏi đầy đủ trên phần TLCH để được trợ giúp nhé. Chứ bạn cũng không có đề đâu.

Khách vãng lai đã xóa
nasa
Xem chi tiết
Nguyễn  Việt Dũng
28 tháng 9 2023 lúc 13:13

Bài nào v ạ

nasa
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 11 2023 lúc 9:45

a: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

Xét tứ giác ABDC có

H là trung điểm chung của AD và BC

nên ABDC là hình bình hành

Hình bình hành ABDC có AB=AC

nên ABDC là hình thoi

b: H là trung điểm của BC

=>\(HB=HC=\dfrac{BC}{2}=3\left(cm\right)\)

ΔAHB vuông tại H

=>\(AH^2+HB^2=AB^2\)

=>\(AH^2=5^2-3^2=16\)

=>AH=4(cm)

AD=2*AH

=>AD=2*4=8(cm)

c: 

Xét tứ giác AHCF có

E là trung điểm chung của AC và HF

nên AHCF là hình bình hành

Hình bình hành AHCF có \(\widehat{AHC}=90^0\)

nên AHCF là hình chữ nhật

=>AH\(\perp\)AF và HC\(\perp\)FC

d: ABDC là hình thoi

=>\(\widehat{BAC}=\widehat{BDC}=60^0\)

ABDC là hình thoi

=>\(\widehat{ABD}+\widehat{BAC}=180^0\)

=>\(\widehat{ABD}=120^0\)

ABDC là hình thoi

=>\(\widehat{ABD}=\widehat{ACD}=120^0\)

Hieu Hoang
Xem chi tiết
Akai Haruma
6 tháng 9 2021 lúc 20:39

Bài 2:

a.

$P=M+N=-xy^2+3x^2y-x^2y^2+\frac{1}{2}x^2y-xy^2+\frac{-2}{3}x^2y^2$

$=(-xy^2-xy^2)+(3x^2y+\frac{1}{2}x^2y)+(-x^2y^2+\frac{-2}{3}x^2y^2)$

$=-2xy^2+\frac{7}{2}x^2y-\frac{5}{3}x^2y^2$

b.

$Q=N-M=(\frac{1}{2}x^2y-xy^2+\frac{-2}{3}x^2y^2)-(-xy^2+3x^2y-x^2y^2)$

$=(\frac{1}{2}x^2y-3x^2y)-xy^2+xy^2+(\frac{-2}{3}x^2y^2+x^2y^2)$

$=\frac{-5}{2}x^2y+\frac{1}{3}x^2y^2$

c.

$Q=\frac{-5}{2}(-1)^2.\frac{1}{2}+\frac{1}{3}(-1)^2.(\frac{1}{2})^2=\frac{-7}{6}$

Akai Haruma
6 tháng 9 2021 lúc 20:43

Bài 3:
a. 

$A(x)=\frac{1}{3}x^2-2x^3+2x-\frac{4}{3}x^2-x-1$

$=-2x^3-x^2+x-1$

$A(x)$ có hệ số cao nhất là $-2$ và hệ số tự do là $-1$

$B(x)=2x^3+x^2+1$

$B(x)$ có hệ số cao nhất là $2$ và hệ số tự do là $1$

b.

$B(x)=(2x^3+2x^2)-(x^2-1)=2x^2(x+1)-(x-1)(x+1)$

$=(x+1)(2x^2-x+1)$

$B(-1)=(-1+1)(2x^2-x+1)=0$ nên $-1$ là nghiệm của $B(x)$

c.

$C(x)=A(x)+B(x)=-2x^3-x^2+x-1+(2x^3+x^2+1)$

$=x$

d.

$C(x)=0\Leftrightarrow x=0$

Vậy $x=0$ là nghiệm của $C(x)$

Hieu Hoang
Xem chi tiết
Nguyễn Hân
Xem chi tiết
Trúc Giang
2 tháng 6 2021 lúc 8:53

a)

\(\left(x+1\right)\left(x-3\right)\left(x^2-2x\right)=-2\)

<=> (x + 1).(x - 3).x.(x - 2) = -2

<=> [ (x + 1). (x - 3) ]. [ x. (x - 2) ] = -2

\(\Leftrightarrow\left(x^2-2x-3\right).\left(x^2-2x\right)+2=0\) (1)

Đặt \(x^2-2x=a\)

PT (1) <=> (a - 3).a + 2 = 0

\(\Leftrightarrow a^2-3a+2=0\)

\(\Leftrightarrow a^2-a-2a+2=0\)

<=> a. (a - 1) - 2. (a - 1) = 0

<=> (a - 1). (a - 2) = 0

<=> a - 1 = 0 hoặc a - 2 = 0

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-1=0\\x^2-2x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^2-2=0\\\left(x-1\right)^2-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1-\sqrt{2}\right).\left(x-1+\sqrt{2}\right)=0\\\left(x-1-\sqrt{3}\right).\left(x-1+\sqrt{3}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1+\sqrt{2}\\x=1-\sqrt{2}\\x=1+\sqrt{3}\\x=1-\sqrt{3}\end{matrix}\right.\)

Lê Thị Thục Hiền
2 tháng 6 2021 lúc 9:18

b) \(\left\{{}\begin{matrix}x^2+x-y^2-y=0\left(1\right)\\x^2+y^2-2\left(x+y\right)=0\left(2\right)\end{matrix}\right.\)

PT (1)\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x+y=-1\end{matrix}\right.\)

TH1: x=y thay vào Pt (2) ta được: \(2x^2-4x=0\Leftrightarrow\left[{}\begin{matrix}x=0\Rightarrow y=0\\x=2\Rightarrow y=2\end{matrix}\right.\)

TH2: Thay x+y=-1 vào Pt (2) ta được: \(x^2+y^2+2=0\left(vn\right)\)

Vậy hẹ pt có nghiệm (x;y)=(0;0) ; (2;2)

Đặng Khánh
2 tháng 6 2021 lúc 9:23

Bổ sung câu hệ

b, \(\left\{{}\begin{matrix}x^2+x-y^2-y=0\left(1\right)\\x^2+y^2-2\left(x+y\right)=0\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left(x-y\right)\left(x+y\right)+\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y+1\right)=0\)\(\)

Th1 : \(x-y=0\Leftrightarrow x=y\), Thế vào (2)

\(\left(2\right)\Leftrightarrow x^2+x^2-2\left(x+x\right)=0\Leftrightarrow2x^2-4x=0\)

\(\Leftrightarrow2x\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\Leftrightarrow y=0\\x=2\Leftrightarrow y=2\end{matrix}\right.\)

Th2: \(x+y+1=0\Leftrightarrow y=-\left(x+1\right)\), thế vào (2)

\(\left(2\right)\Leftrightarrow x^2+\left(x+1\right)^2-2\left(-1\right)=0\)

\(\Leftrightarrow2x^2+2x+3=0\)

Mà \(2x^2+2x+3=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{2}>0\)

-> Vô nghiệm

Vậy \(\left(x,y\right)\in\left\{\left(0;0\right);\left(2;2\right)\right\}\)

Phương Nguyễn
Xem chi tiết
htfziang
26 tháng 9 2021 lúc 15:50

hình 2 

a//b vì hai đường thẳng này cùng vuông góc với đường thẳng c

Lê Khánh Vy cute
Xem chi tiết
Khinh Yên
24 tháng 9 2021 lúc 21:01

more beautiful->the most beautiful

hotter->the hottest

crazier=>the craziest

slowliest->the slowliest

fewer->the fewest

less->the least

worse->the worst

better=>the best

more attractive=>the most attractive

bigger=>the biggest

༺ミ𝒮σɱєσиє...彡༻
24 tháng 9 2021 lúc 21:01

so sánh hơn                                                 so sánh nhất

1. more beautiful                                          the most beautiful

2. hotter                                                        the hottest

3. crazier                                                      the craziest

4. more slowly                                              the most slowly

Nhi Nguyễn
24 tháng 9 2021 lúc 21:59

so sánh hơn        

     1. more beautiful   

     2. hotter  

     3. crazier    

     4. more slowly       

so sánh nhất

     1.the most beautiful

     2.the hottest

     3.the craziest

     4.the most slowly

Noname
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 1 2022 lúc 22:04

Gọi số CLB tối đa là x (nguyên dương).

Theo nguyên lý Dirichlet, từ 10 học sinh nào đó luôn có ít nhất \(\left[\dfrac{10+x-1}{x}\right]\) học sinh tham gia cùng 1 CLB

\(\Rightarrow\left[\dfrac{9+x}{x}\right]=3\Rightarrow\left[\dfrac{9}{x}+1\right]=3\)

\(\Rightarrow\left[\dfrac{9}{x}\right]+1=3\Rightarrow\left[\dfrac{9}{x}\right]=2\)

\(\Rightarrow2\le\dfrac{9}{x}< 3\Rightarrow3< x\le\dfrac{9}{2}\)

\(\Rightarrow x=4\)

Khi đó theo nguyên lý Dirichlet luôn tồn tại 1 CLB có ít nhất \(\left[\dfrac{35+4-1}{4}\right]=9\) học sinh