1) Tim x
a) x + 1/2 . x - 25% . x = 10
b) x + x -1 + x-2 + x-3 + x-4 +........+x - 5= 255
tìm x
a,(x+1)^3-(x-1)^3-6(x-1)^2=-10
b,x(x+5)(x-5)-(x+2)(x^2-2x+4)=42
c,(x-2)^3-(x-3)(x^2+3x+9)+6(x+1)^2=49
a) \(\left(x+1\right)^3-\left(x-1\right)^3-6\cdot\left(x-1\right)^2=10\)
\(\Rightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\cdot\left(x^2-2x+1\right)=10\)
\(\Rightarrow6x^2+2-6x^2+12x-6=10\)
\(\Rightarrow12x-4=10\)
\(\Rightarrow12x=14\)
\(\Rightarrow x=\dfrac{7}{6}\)
b) \(x\left(x+5\right)\left(x-5\right)-\left(x+2\right)\left(x^2-2x+4\right)=42\)
\(\Rightarrow x\left(x^2-25\right)-\left(x^3+8\right)=42\)
\(\Rightarrow x^3-25x-x^3-8=42\)
\(\Rightarrow-25x-8=42\)
\(\Rightarrow-25x=50\)
\(\Rightarrow x=\dfrac{50}{-25}=-2\)
c) \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=49\)
\(\Rightarrow x^3-6x^2+12x-8-\left(x^3-27\right)+6\left(x^2+2x+1\right)=49\)
\(\Rightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=49\)
\(\Rightarrow24x+25=49\)
\(\Rightarrow24x=24\)
\(\Rightarrow x=\dfrac{24}{24}=1\)
Tìm x
a. 4(x-3)^2-(2x-1)(2x+1)=10
b. x^3-25x=0
\(a,\Leftrightarrow4x^2-24x+36-4x^2+1=10\\ \Leftrightarrow-24x=-27\Leftrightarrow x=\dfrac{9}{8}\\ b,\Leftrightarrow x\left(x^2-25\right)=0\\ \Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
\(a,4.\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)=10\)
\(\Leftrightarrow4.\left(x^2-6x+9\right)-\left(2x^2\right)-1^2=10\)
\(\Leftrightarrow4x^2-24x+36-4x^2+1=10\)
\(\Leftrightarrow-24x+27=10\)
\(\Leftrightarrow-24x=-27\)
\(\Leftrightarrow x=\dfrac{27}{24}\)
Vậy \(x=\dfrac{27}{24}\)
\(b,x^3-25x=0\)
\(\Leftrightarrow x\left(x^2-25\right)=0\)
\(\Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-5=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
Vậy \(x\in\left\{0;\pm5\right\}\)
a, 5*(4x-1)+2*(1-3x)-6*(x+5)=10
b, 2x*(x+1)+3*(x-1)*(x+1)-5x*(x+1)+6x mũ 2 = 0
c, 4*(x-1)*(x+5)-(x+2)*(x+5)-3(x-1)*(x+2)=0
d,2*(5x-8)-3*(4x-5)=4*(3x-4)+11
a: Ta có: \(5\left(4x-1\right)+2\left(1-3x\right)-6\left(x+5\right)=10\)
\(\Leftrightarrow20x-5+2-6x-6x-30=10\)
\(\Leftrightarrow8x=43\)
hay \(x=\dfrac{43}{8}\)
b: ta có: \(2x\left(x+1\right)+3\left(x-1\right)\left(x+1\right)-5x\left(x+1\right)+6x^2=0\)
\(\Leftrightarrow2x^2+2x+3x^2-3-5x^2-5x+6x^2=0\)
\(\Leftrightarrow6x^2-3x-3=0\)
\(\Leftrightarrow2x^2-x-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\end{matrix}\right.\)
c: Ta có: \(4\left(x-1\right)\left(x+5\right)-\left(x+5\right)\left(x+2\right)-3\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow4\left(x^2+4x-5\right)-\left(x^2+7x+10\right)-3\left(x^2+x-2\right)=0\)
\(\Leftrightarrow4x^2+16x-20-x^2-7x-10-3x^2-3x+6=0\)
\(\Leftrightarrow6x=24\)
hay x=4
d: Ta có: \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Leftrightarrow10x-16-12x+15=12x-16+11\)
\(\Leftrightarrow-14x=-5+1=-4\)
hay \(x=\dfrac{2}{7}\)
Bài 3: Tìm x
a) (2x+3)2−4x2=10
b) (x+1)2−(2+x)(x−2)=0
c) (5x−1)(1+5x)=25x2−7x+15
d) (4−x)2−16=0
e) 3x2−12x=0
g) x2−8x−3x+24=0
e: \(\Leftrightarrow3x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
1.a 2 5 1 4 3 10b 8 12 3 7 9 7 c 1 6 x 4 9 5 9 x 1 6 1d 183 93 1 5 2 x 102 1 2 3 4 1 2021 2.a 3 5 x 0,8b 1 4 3 4 x 2 5c x 1 2 8 25 x 1 cái gạch ngang là gạch phân số ạ VD một phần hai 1 2mong mng giúp em sớm ạ
Xin lỗi m.n nhé gửi nhầm tí
B1: Tìm x
a) (x-3)^2+(4-x)(x+4)=10
b) x^2-2x=0
c) (x^2-9)^2-(x-3)^2=0
a) \(\left(x-3\right)^2+\left(4-x\right)\left(x+4\right)=10\)
\(\Leftrightarrow\left(x^2-2\cdot x\cdot3+3^2\right)+\left(4-x\right)\left(4+x\right)=10\)
\(\Leftrightarrow x^2-6x+9+\left(4^2-x^2\right)-10=0\)
\(\Leftrightarrow x^2-6x-1+16-x^2=0\)
\(\Leftrightarrow-6x+15=0\)
\(\Leftrightarrow6x=15\)
\(\Leftrightarrow x=\dfrac{5}{2}\)
b) \(x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
c) \(\left(x^2-9\right)^2-\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x^2-3^2\right)^2-\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x-3\right)^2\left(x+3\right)^2-\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x-3\right)^2\left[\left(x+3\right)^2-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-3\right)^2=0\\\left(x+3\right)^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-3=0\\\left(x+3\right)^2=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x+3=1\\x+3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\\x=-4\end{matrix}\right.\)
tim x
a,3/8=6/x ; b,1/9=x/27
c,4/x=8/6 ; d,3/x-5=-4/x+2
\(a,\dfrac{3}{8}=\dfrac{6}{x}\\ \Rightarrow x=6:\dfrac{3}{8}\\ \Rightarrow x=16\\ b,\dfrac{1}{9}=\dfrac{x}{27}\\ \Rightarrow x=\dfrac{1}{9}.27\\ \Rightarrow x=3\\ c,\dfrac{4}{x}=\dfrac{8}{6}\\ \Rightarrow x=4:\dfrac{4}{3}\\ \Rightarrow x=3\\ d,\dfrac{3}{x-5}=\dfrac{-4}{x+2}\\ \Rightarrow3\left(x+2\right)=-4\left(x-5\right)\\ \Rightarrow3x+6=-4x+20\\ \Rightarrow3x+6+4x-20=0\\ \Rightarrow7x-14=0\\ \Rightarrow7x=14\\ \Rightarrow x=2\)
a: =>6/x=3/8
hay x=16
b: =>x/27=1/9
nên x=3
c: =>4/x=4/3
nên x=3
d: =>3/x-5=-4/x+2
=>3x+2=-4x+20
=>7x=18
hay x=18/7
a) (2x - 1)2 - (2x + 5)(2x + 1) = 10
b) 92 (x - 1) + 25 .(1 - x) = 0
c) x2 + 3x - 4 = 0
`#040911`
`a)`
\(\left(2x-1\right)^2-\left(2x+5\right)\left(2x+1\right)=10\)
\(\Leftrightarrow 4x^2 - 4x + 1 - (4x^2 + 12x + 5) = 10 \\ \Leftrightarrow 4x^2 - 4x + 1 - 4x^2 - 12x - 5 = 10 \\ \Leftrightarrow (4x^2 - 4x^2) - (4x + 12x) + (1 - 5) = 10 \\ \Leftrightarrow -16x - 4 = 10 \Leftrightarrow -16x = 10 + 4 \\ \Leftrightarrow -16x = 14 \\ \Leftrightarrow x = \dfrac{-7}{8}\)
Vậy, `x = -7/8`
`b)`
`9^2(x - 1) + 25(1 - x) = 0`
`<=> 9^2(x - 1) - 25(x - 1) = 0`
`<=> (x - 1)(9^2 - 5^2) = 0`
`<=>`\(\left[{}\begin{matrix}x-1=0\\9^2-5^2=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=1\\56=0\left(\text{vô lý}\right)\end{matrix}\right.\)
Vậy, `x = 1`
`c)`
`x^2+3x - 4 = 0`
`<=> x^2 + 4x - x - 4 = 0`
`<=> (x^2 - x) + (4x - 4) = 0`
`<=> x(x - 1) + 4(x - 1) = 0`
`<=> (x + 4)(x - 1) = 0`
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\\ \text{Vậy, }x\in\left\{-4;1\right\}\)
a: =>4x^2-4x+1-(4x^2+2x+10x+5)=10
=>4x^2-4x+1-10-4x^2-12x-5=0
=>-16x-4=0
=>x=-1/4
b: =>(x-1)(9^2-25)=0
=>x-1=0
=>x=1
c: =>x^2+4x-x-4=0
=>(x+4)(x-1)=0
=>x=1 hoặc x=-4
Giải bất phương trình
a) 4(x-3)2-(2x-1)2<10
b) x(x-5)(x+5)-(x+2)(x2-2x+4)<hoặc= 3
a: =>4x^2-24x+36-4x^2+4x-1<10
=>-20x<10-35=-25
=>x>=5/4
b: =>x(x^2-25)-x^3-8<=3
=>x^3-25x-x^3-8<=3
=>-25x<=11
=>x>=-11/25