Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Loan Tran

B1: Tìm x
a) (x-3)^2+(4-x)(x+4)=10
b) x^2-2x=0
c) (x^2-9)^2-(x-3)^2=0

Toru
26 tháng 12 2023 lúc 20:57

a) \(\left(x-3\right)^2+\left(4-x\right)\left(x+4\right)=10\)

\(\Leftrightarrow\left(x^2-2\cdot x\cdot3+3^2\right)+\left(4-x\right)\left(4+x\right)=10\)

\(\Leftrightarrow x^2-6x+9+\left(4^2-x^2\right)-10=0\)

\(\Leftrightarrow x^2-6x-1+16-x^2=0\)

\(\Leftrightarrow-6x+15=0\)

\(\Leftrightarrow6x=15\)

\(\Leftrightarrow x=\dfrac{5}{2}\)

b) \(x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

c) \(\left(x^2-9\right)^2-\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(x^2-3^2\right)^2-\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(x-3\right)^2\left(x+3\right)^2-\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(x-3\right)^2\left[\left(x+3\right)^2-1\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-3\right)^2=0\\\left(x+3\right)^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-3=0\\\left(x+3\right)^2=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x+3=1\\x+3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\\x=-4\end{matrix}\right.\)


Các câu hỏi tương tự
43-LÊ XUÂN ANH VIỆT-8A5
Xem chi tiết
Trang Kieu
Xem chi tiết
anh hoang
Xem chi tiết
nghia
Xem chi tiết
Nguyễn Thị Ngọc Lan
Xem chi tiết
Quynh Tram Nguyenn
Xem chi tiết
Tuyết Ly
Xem chi tiết
18. Đào Gia Hân
Xem chi tiết
Kiều Thị Ngọc Ánh
Xem chi tiết