x2 - (m+1)x + m2 - 2m +2 =0
a)Tìm các giá trị của m để pt vô nghiệm, có nghiệm kép, có 2 nghiệm
b) Tìm m để x1+x2 đạt giá trị bé nhất, lớn nhất
Cho pt: \(x^2\) - 6x + m + 1 =0
a, Tìm tất cả các giá trị của m để pt có nghiệm
b, Gọi x1 , x2 là hai nghiệm của pt . Tìm m để \(x_1^2\) + \(x^2_2\) = 20
a: \(\text{Δ}=\left(-6\right)^2-4\left(m+1\right)=-4m-4+36=-4m+32\)
Để phương trình có nghiệm thì -4m+32>=0
=>-4m>=-32
hay m<=8
b: Theo Vi-et,ta được:
\(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=m+1\end{matrix}\right.\)
Ta có: \(x_1^2+x_2^2=20\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\)
\(\Leftrightarrow36-2\left(m+1\right)=20\)
=>2(m+1)=16
=>m+1=8
hay m=7(nhận)
`a)` Ptr có nghiệm`<=>\Delta' >= 0`
`<=>(-3)^2-(m+1) >= 0`
`<=>9-m-1 >= 0<=>m <= 8`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
`b)`Với `m <= 8`, áp dụng Viét có:`{(x_1+x_2=[-b]/a=6),(x_1.x_2=c/a=m+1):}`
Ta có:`x_1 ^2+x_2 ^2=20`
`<=>(x_1+x_2)^2-2x_1.x_2=20`
`<=>6^2-2(m+1)=20`
`<=>36-2m-2=20`
`<=>2m=14<=>m=7` (t/m)
cho phương trình x2 - (m+1)x +m2 -2m +2 =0 , tìm m để phương trình có 2 nghiệm x1 , x2 sao cho biểu thức P = x12 +x22 đạt giá trị lớn nhất
\(\Delta=\left(m+1\right)^2-4\left(m^2-2m+2\right)=-3m^2+10m-7\ge0\)
\(\Rightarrow1\le m\le\dfrac{7}{3}\)
\(\left\{{}\begin{matrix}x_1+x_2=m+1\\x_1x_2=m^2-2m+2\end{matrix}\right.\)
\(P=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=\left(m+1\right)^2-2\left(m^2-2m+2\right)\)
\(=-m^2+6m-3\)
\(=\left(-m^2+6m-\dfrac{77}{9}\right)+\dfrac{50}{9}\)
\(=\left(\dfrac{11}{3}-m\right)\left(m-\dfrac{7}{3}\right)+\dfrac{50}{9}\le\dfrac{50}{9}\)
\(P_{max}=\dfrac{50}{9}\) khi \(m=\dfrac{7}{3}\)
cho pt: x^2-3x+2m+2=0(m là tham số) a)giải pt khi m=0 b)tìm m để pt có nghiệm c) gọi x1,x2 là 2 nghiệm của PT.Tìm m để A=x1^2+x2^2+x1^2.x2^2 đạt giá trị nhỏ nhất,tìm giá trị nhỏ nhất đó
x2-(m+2)x+m2-1=0
Gọi x1,x2 là 2 nghiệm của phương trình. Tìm m thỏa mãn x1-x2=2
Tìm giá trị nguyên nhỏ nhất của m để pt có 2 nghiệm khác nhau
Δ=(m+2)^2-4(m^2-1)
=m^2+4m+4-4m^2+4
=-3m^2+4m+8
Để phương trình có hai nghiệm thì -3m^2+4m+8>=0
=>\(\dfrac{2-2\sqrt{7}}{3}< =m< =\dfrac{2+2\sqrt{7}}{3}\)
x1-x2=2
=>(x1-x2)^2=4
=>(x1+x2)^2-4x1x2=4
=>(m+2)^2-4(m^2-1)=4
=>-3m^2+4m+8=4
=>-3m^2+4m+4=0
=>m=2 hoặc m=-2/3
Cho PT : x2 - (2m - 1)x + m2- 2 =0
- Tìm giá trị của m để PT có 2 nghiệm phân biệt x1,x2 thỏa / x1-x2/ =\(\sqrt{5}\)
Ta có: \(\Delta=\left(2m-1\right)^2-4\cdot1\cdot\left(m^2-2\right)\)
\(=4m^2-4m+1-4m^2+8\)
\(=-4m+9\)
Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)
\(\Leftrightarrow-4m+9>0\)
\(\Leftrightarrow-4m>-9\)
hay \(m< \dfrac{9}{4}\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1\cdot x_2=m^2-2\end{matrix}\right.\)
Ta có: \(\left|x_1-x_2\right|=\sqrt{5}\)
\(\Leftrightarrow\sqrt{\left(x_1-x_2\right)^2}=\sqrt{5}\)
\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\sqrt{5}\)
\(\Leftrightarrow\left(2m-1\right)^2-4\cdot\left(m^2-2\right)=5\)
\(\Leftrightarrow4m^2-4m+1-4m^2+8=5\)
\(\Leftrightarrow-4m=-4\)
hay m=1(thỏa ĐK)
Vậy: m=1
PT có 2 nghiệm phân biệt
`<=>Delta>0`
`<=>(2m-1)^2-4(m^2-2)>0`
`<=>4m^2-4m+1-4m^2+8>0`
`<=>-4m+9>0`
`<=>m<9/4`
Áp dụng vi-ét:`x_1+x_2=2m-1,x_1.x_2=m^2-2`
`|x_1-x_2|=\sqrt5`
`<=>(x_1-x_2)^2=5`
`<=>(x_1+x_2)^2-4(x_1.x_2)=5`
`<=>4m^2-4m+1-4m^2+8=5`
`<=>-4m+8=5`
`<=>4m=3`
`<=>m=3/4(tm)`
Vậy `m=3/4=>|x_1-x_2|=\sqrt5`
PT có 2 nghiệm phân biệt
`<=>Delta>0`
`<=>(2m-1)^2-4(m^2-2)>0`
`<=>4m^2-4m+1-4m^2+8>0`
`<=>-4m+9>0`
`<=>m<9/4`
Áp dụng vi-ét:`x_1+x_2=2m-1,x_1.x_2=m^2-2`
`|x_1-x_2|=\sqrt5`
`<=>(x_1-x_2)^2=5`
`<=>(x_1+x_2)^2-4(x_1.x_2)=5`
`<=>4m^2-4m+1-4m^2+8=5`
`<=>-4m+9=5`
`<=>4m=4`
`<=>m=1(tm)`
Vậy `m=1=>|x_1-x_2|=\sqrt5`
Bài 1 cho pt x^2-2(m+1)x+4m+m^2=0 .Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 sao cho biểu thức A =|x1-x2| đạt giá trị nhỏ nhất
bài 2 cho pt x^2+mx+2m-4=0.Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+|x2|=3
bài 3 cho pt x^2-3x-m^2+1=0.tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+2|x2|=3
Tc pt: x2 -(2m+1)x + m2 -1=0
tìm các giá trị của m để phương trình có 2 nghiệm x1 x2 thỏa mãn: ( x12 - 2mx1 + m2) (x2+1)=1
Tc pt: x2 -(2m+1)x + m2 -1=0
tìm các giá trị của m để phương trình có 2 nghiệm x1 x2 thỏa mãn: ( x12 - 2mx1 + m2) (x2+1)=1
2 nghiệp pt phải:
(2m - 1)2-4(m2 - 1)≥0
Vì x1 là nghiệm nên
x21−(2m−1)x1+m2−1=0
<=> x12−(2m−1)x1+m2−1=0
<=>x12−2mx1+m2=x1+1
<=> 9m2=0 <=>m=0
#YQ
Cho PT: x2 - 2(m+1)x + 2m - 3 = 0
Tìm các giá trị của m để PT có 2 nghiệm phân biệt x1, x2 thỏa mãn biểu thức \(P=\left|\dfrac{x_1+x_2}{x_1-x_2}\right|\) đạt giá trị nhỏ nhất.
Có\(\Delta=4\left(m+1\right)^2-4\left(2m-3\right)=4m^2+16>0\forall m\)
=> pt luôn có hai nghiệm pb
Theo viet có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m-3\end{matrix}\right.\)
Có :\(P^2=\left(\dfrac{x_1+x_2}{x_1-x_2}\right)^2=\dfrac{4\left(m+1\right)^2}{\left(x_1+x_2\right)^2-4x_1x_2}\)
\(=\dfrac{4\left(m+1\right)^2}{4\left(m+1\right)^2-4\left(2m-3\right)}=\dfrac{4\left(m+1\right)^2}{4m^2+16}\)\(\ge0\)
\(\Rightarrow P\ge0\)
Dấu = xảy ra khi m=-1