1Co biểu thức B= x^3+x^2z+y^2z-xyz+y^3
a.Hãy phân tích B thành nhân tử
b.Cmr: Nếu x+y+z=1 thì b>=0
Cho biểu thức :
B = x3 + x2z + y2z - xyz + y3
a) hãy phân tích B thành nhân tử
b) chứng minh rằng nếu x+y+z=1 thì B \(\ge\) 0
a) \(B=x^3+x^2z+y^2z-xyz+y^3\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2-xy+y^2\right)\)
\(=\left(x^2-xy+y^2\right)\left(x+y+z\right)\)
b) \(B=\left(x^2-xy+y^2\right)\left(x+y+z\right)=x^2-xy+y^2\)
\(=x^2-2.x.\dfrac{1}{2}y+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2=\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2\ge0\)
Dấu bằng xảy ra khi \(x=y=0\)
1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2,
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp
5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)
mày hỏi vả bài kiểm tra à thằng điên
x mũ ba cộng x mũa 2z cộng y mũ 2z trừ xyz cộng y mũ 3
phân tích đa thức thành nhân tử ạ
Phân tích đa thức thành nhân tử:
\(a,x^2-x-y^2+y\)
\(b,x^2+2x+2z-z^2\)
\(a,x^2-x-y^2+y\\=(x^2-y^2)-(x-y)\\=(x-y)(x+y)-(x-y)\\=(x-y)(x+y-1)\\---\\b,x^2+2x+2z-z^2\\=(x^2-z^2)+(2x+2z)\\=(x-z)(x+z)+2(x+z)\\=(x+z)(x-z+2)\\\text{#}Toru\)
Lời giải:
a. $x^2-x-y^2+y=(x^2-y^2)-(x-y)=(x-y)(x+y)-(x-y)=(x-y)(x+y-1)$
b. $x^2+2x+2z-z^2=(x^2+2x+1)-(z^2-2z+1)=(x+1)^2-(z-1)^2$
$=(x+1-z+1)(x+1+z-1)=(x-z+2)(x+z)$
\(a,x^2-x-y^2+y\\ =\left(x^2-y^2\right)-\left(x-y\right)\\ =\left(x-y\right)\left(x+y\right)-\left(x-y\right)\\ =\left(x-y\right)\left(x+y-1\right)\\ ---\\ b,x^2+2x+2z-z^2\\ =\left(x^2+2x+1\right)-\left(z^2-2z+1\right)\\ =\left(x+1\right)^2-\left(z-1\right)^2\\ =\left[\left(x+1\right)+\left(z-1\right)\right].\left[\left(x+1\right)-\left(z-1\right)\right]\\ =\left(x+z\right)\left(x-z+2\right)\)
Phân tích đa thức \(\dfrac{1}{3}xy+x^2z+xz\) thành nhân tử
a. \(\dfrac{1}{3}x\left(y+xz+z\right)\)
b. \(x\left(\dfrac{1}{3}y+xz+z\right)\)
Cách phân tích nào đúng a hay b và GIẢI THÍCH VÌ SAO ?
Tính giá trị biểu thức sau : B = (x : y : 2z . xyz)(x : y : z² . x² + y)
\(B=\dfrac{x}{y}\cdot\dfrac{1}{2z}\cdot xyz\cdot\left(\dfrac{x^3}{yz^2}+y\right)\)
\(=\dfrac{x^2yz}{2yz}\cdot\dfrac{x^3+y^2z^2}{yz^2}\)
\(=\dfrac{x^2}{2}\cdot\dfrac{1}{yz^2}\cdot\left(x^3+y^2z^2\right)=\dfrac{x^2}{2yz^2}\cdot\left(x^3+y^2z^2\right)\)
1.Phân tích đa thức thành nhân tử
a, x^3z+x^2yz-x^2z^2-xyz^2
b, x^3+x^2y-x^2z-xyz
c, a^2x+a^2y+ax+ay+x+y
d, xa+xb+ya+yb-za-zb
2.Phân tích đa thức thành nhân tử
a, a^2+2ab+b^2-c^2+2cd-d^2
b, x^2-4xy+4y^2-x+2y
c,2^2-(x-1)^2+2(x-1)-1
d, xz-yz-x^2+2xy-y^2
3.Tìm x biết
a, x(2x-7)-4x+14 = 0
b, x(x-1)+2x-2 = 0
c, x+x^2-x^2-x^4 = 6
d, 2x^3+3x^2+2x+3 =0
Bài 3:
a: =>(2x-7)(x-2)=0
=>x=7/2 hoặc x=2
b: =>(x-1)(x+2)=0
=>x=1 hoặc x=-2
d: =>2x+3=0
hay x=-3/2
Phân tích đa thức thành nhân tử :
a) \(5x^3z-10x^2z-5xz^3-5xy^2z-5xz+10xyz^2\)
b) \(x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-z^2x^2\left(z-x\right)\)
c) \(x^2y+xy^2+x^2z+xz^2+y^2z+2xyz\)
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
Phân tích đa thức thành nhân tử :
\(2xyz+x^2y+xy^2+x^2z+xz^2+y^2z+yz^2.\)
\(b,x^2\left(y-z\right)+y^2\left(z-y\right)+z^2\left(x-y\right)\)
\(2xyz+x^2y+xy^2+x^2z+xz^2+y^2z+yz^2\)
\(=x^2\left(y+z\right)+yz\left(y+z\right)+x\left(y^2+z^3\right)+2xyz\)
\(=\left(y+z\right)\left(x^2+yz\right)+x\left(y^2+z^2+2yz\right)\)
\(=\left(y+z\right)\left(x^2+yz\right)+x\left(y+z\right)^2\)
\(=\left(y+z\right)\left(x^2+yz\right)+xy+xz\)
\(=\left(y+z\right)\left[x\left(x+2\right)+y\left(x+2\right)\right]\)
\(=\left(y+z\right)\left(x+y\right)\left(x+2\right)\)
\(b,x^2\left(y-z\right)+y^2\left(z-y\right)+z^2\left(x-y\right)\)
\(=x^2\left(y-z\right)+y^2z-y^2x+z^2x-z^2y\)
\(=x^2\left(y-z\right)+yz\left(y-z\right)-x\left(y^2-z^2\right)\)
\(=\left(y-z\right)\left[x^2+yz-x\left(y+z\right)\right]\)
\(=\left(y-z\right)\left[x\left(x-y\right)-z\left(x-y\right)\right]\)
\(=\left(y-z\right)\left[\left(x-z\right)\left(x-y\right)\right]\)