Phân tích đa thức \(\dfrac{2}{5}x^2+5x^3+x^2y\) thành nhân tử
a. \(x^2\left(\dfrac{2}{5}+5x+y\right)\)
b. \(\dfrac{1}{5}x^2\left(2+25x+5y\right)\)
Cách phân tích nào đúng a hay b và GIẢI THÍCH VÌ SAO?
Phân tích đa thức thành nhân tử :
a. \(\dfrac{1}{2}x^2-2y^2\)
b. \(\dfrac{1}{3}xy+x^2z+xz\)
c. \(18x^3-\dfrac{8}{25}x\)
d. \(\dfrac{2}{5}x^2+5x^3+x^2y\)
e. \(\dfrac{1}{2}\left(x^2+y^2\right)^2-2x^2y^2\)
f. \(27x^3-\dfrac{1}{8}y^3\)
Phân tích đa thức thành nhân tử :
a. \(\dfrac{1}{2}x^2-2y^2\)
b. \(\dfrac{1}{3}xy+x^2z+xz\)
c. \(18x^3-\dfrac{8}{25}x\)
d. \(\dfrac{2}{5}x^2+5x^3+x^2y\)
e. \(\dfrac{1}{2}\left(x^2+y^2\right)^2-2x^2y^2\)
f. \(27x^3-\dfrac{1}{8}y^3\)
g. \(\dfrac{1}{2}x^2+\dfrac{1}{4}x+\dfrac{1}{32}\)
phân tích đa thức \(\dfrac{1}{2}x^2+\dfrac{1}{4}x+\dfrac{1}{32}\) thành nhân tử
a. \(\dfrac{1}{2}\left(x+\dfrac{1}{4}\right)^2\)
b. \(\dfrac{1}{32}\left(16x^2+8x+1\right)=\dfrac{1}{32}\left(4x+1\right)^2\)
cách phân tích nào đúng a hay b giải thích vì sao biết rằng khi phân tích đa thức thành nhân tử chỉ nhận được một kết quả
phân tích đa thức \(\dfrac{1}{2}x^2+\dfrac{1}{4}x+\dfrac{1}{32}\) thành nhân tử
a. \(\dfrac{1}{2}\left(x+\dfrac{1}{4}\right)^2\)
b. \(\dfrac{1}{32}\left(16x^2+8x+1\right)=\dfrac{1}{32}\left(4x+1\right)^2\)
cách phân tích nào đúng a hay b giải thích vì sao biết rằng khi phân tích đa thức thành nhân tử chỉ nhận được một kết quả
Phân tích đa thức thành nhân tử :
a. \(\dfrac{1}{2}x^2-2y^2\)
b. \(\dfrac{1}{3}xy+x^2z+xz\)
c. \(18x^3-\dfrac{8}{25}x\)
d. \(\dfrac{2}{5}x^2+5x^3+x^2y\)
Phân tích đa thức thành nhân tử
\(27x^3-\dfrac{1}{8}y^3\)
a. \(\left(3x-\dfrac{1}{2}y\right)\left(9x^2+\dfrac{3}{2}xy+\dfrac{1}{4}x^2\right)\)
b. \(\dfrac{1}{8}\left(216x^3-y^3\right)=\dfrac{1}{8}\left(6x-y\right)\left(36x^2+6xy+y^2\right)\)
cách phân tích nào đúng a hay b giải thích vì sao
Cho x , y , z là các số dương và xy + yz + xz = 3 . Tìm giá trị nhỏ nhất của biểu thức :A=\(\dfrac{x^2}{z\left(z^2+x^2\right)}+\dfrac{y^2}{x\left(x^2+y^2\right)}+\dfrac{z^2}{y\left(y^2+z^2\right)}\)
Cho các số thực dương \(x,y,z\) thỏa mãn: \(xy+yz+xz=1\). Hãy tính giá trị biểu thức: \(A=x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\dfrac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)