Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho biểu thức :
B = x3 + x2z + y2z - xyz + y3
a) hãy phân tích B thành nhân tử
b) chứng minh rằng nếu x+y+z=1 thì B \(\ge\) 0
1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2,
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp
5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)
x mũ ba cộng x mũa 2z cộng y mũ 2z trừ xyz cộng y mũ 3
phân tích đa thức thành nhân tử ạ
Phân tích đa thức thành nhân tử:
\(a,x^2-x-y^2+y\)
\(b,x^2+2x+2z-z^2\)
Tính giá trị biểu thức sau : B = (x : y : 2z . xyz)(x : y : z² . x² + y)
Phân tích đa thức thành nhân tử :
a) \(5x^3z-10x^2z-5xz^3-5xy^2z-5xz+10xyz^2\)
b) \(x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-z^2x^2\left(z-x\right)\)
c) \(x^2y+xy^2+x^2z+xz^2+y^2z+2xyz\)
Phân tích đa thức thành nhân tử :
\(2xyz+x^2y+xy^2+x^2z+xz^2+y^2z+yz^2.\)
\(b,x^2\left(y-z\right)+y^2\left(z-y\right)+z^2\left(x-y\right)\)
Phân tích các biểu thức sau thành nhân tử:
1) A=\(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz\)
2) B=\(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+3xyz\)
3) C=\(yz\left(y+z\right)+zx\left(z-x\right)-xy\left(x+y\right)\)
4) D=\(2a^2b+4ab^2-a^2c+ac^2-4b^2c+2bc^2-4a^2c\)
5) \(E=y\left(x-2z\right)^2+8xyz+x\left(y-2z\right)^2-2z\left(x+y\right)^2\)
6)F=\(8x^3\left(y+z\right)-y^3\left(z+2x\right)-z^3\left(2x-y\right)\)
LÀM ĐƯỢC CÂU NÀO THÌ LÀM NHÉ, KO CẦN THIẾT PHẢI LÀM HẾT ĐÂU!
1 a) Cho a,b,c là độ dài 3 cạnh của một tam giác .C/m
a^3b+ab^3-abc^2+2a^2b^2>0(1)
b) cho x+y+z=0.(1).C/m x^4+y^4+z^4= 2(x^2y^2+y^2z^2+z^2x^2)
2 a) cho x+y+z=0.C/tỏ x^3+y^3+z^3=3xyz
b) phân tích đa thức thành nhân tử
(a-b)^3+(b-c)^3+(c-a)^3